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Abstract

We use finite difference methods in the treatment of an existing system of partial

differential equations that captures the dynamics of parallel honeycomb construction

in a bee hive. We conduct an uncertainty analysis by calculating the partial rank

correlation coefficient for the parameters to find which are most important to the

outcomes of the model. We then use an eFAST method to determine both the in-

dividual and total sensitivity index for the parameters. Afterwards we examine our

numerical model under varying initial conditions and parameter values, and compare

ratios found from local data with the golden mean by fitting images of the combs

with ellipses and then calculating the length of the major and minor axes.
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Chapter 1

Introduction

It is no secret that pollinators, such as honey bees, play a vital role in the production

of food for the human species. In 2005 the economic value of pollinators worldwide

was estimated at $162 billion, 9.5% of the value of the world agriculture production

used for human food. Without pollinators the production of fruits, vegetables, and

stimulants would have been clearly below the year’s consumption levels [12]. In this

thesis, we research the mathematics behind honeycomb construction.

The building behavior of social insects, such as ants, bees, wasps, and termites,

is a complex and social phenomenon which results in the construction of nests whose

size and complexity would be impossible for just a few insects to build alone. In

particular, Apis mellifera, the European honey bee has a strong tendency to construct

parallel combs in a hive. It begins by worker bees randomly depositing small balls

of wax on the ceiling; the presence of both the bees and the wax attract more bees

to join in the effort. Some deposits grow more quickly than others and some are

deserted altogether. Whenever an arbitrary ball of new wax is deposited this can

be understood as a small fluctuation and the deposit may be enhanced and begin

to form an oval shape that increases in length and determines the orientation of the

construction or it may be abandoned. Future combs will be formed on either side and
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a parallelism within the combs will become evident. The bees are attracted to the

wax, an autocatalytic reaction, but at the same time they are attracted to the other

bees who are waving their legs as a signal for workers to join them in forming waxer

bee chains. The role of these chains is to regulate construction and to maintain the

parallelism of the combs. They allow construction to be coordinated at a distance

much further along than the length of a single bee; however, the orientation of the

chains themselves are dictated by the orientation of the initial stages of construction

[2]. This parallel comb construction has been modeled mathematically and considered

using computer simulations. The purpose of this thesis is to study this same model

by a different method, finite differences, in hopes of creating an updated and more

accurate graphical interpretation.

We begin by introducing the partial differential equation system which includes

equations for the change in the density with respect to time based on their spatial

orientation and an equation for the change in wax concentration with respect to time.

A detailed explanation of the parameters used is given. In the following chapter the

details of how we arrive at our finite difference scheme are provided and we calculate

the truncation error introduced by our method. To increase our understanding of the

model we study the steady states and in particular notice the effect of the parameter

values on these steady states. MatLab software is used to conduct uncertainty and

sensitivity analysis for the purpose of examining the range of the parameters. For a

subset of the parameters, we use a Latin hypercube sampling technique then calculate

the partial rank correlation coefficient for the sampled parameters and determine for

each parameter how a change in its value affects the outputs of the model. We can

get a general idea of the effect that each parameter has on the model by examining

the graphs of outputs versus sampled parameter values. We follow with an extended

Fourier amplitude test (eFAST) to further study the effects of the parameters. With

the eFAST method we can look at both the individual and total effects for each
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parameter. We conclude by examining the measurements of honeycombs collected

in west Tennessee and comparing the ratio of the major and minor axes of overlaid

ellipses with the golden mean. We also extend the study of the model by considering

the graphs of the outputs and searching for the parameter values and initial conditions

that best reproduced the parallelism within the hive and the elliptical nature of the

combs.

1.1 PDE Model

∂tH − θ∇2H = φ− τH +mxH (1.1.1)

∂tV − θ∇2V = φ− τV +myV (1.1.2)

∂tC − (H + V )D∇2C = α(H + V )− νC (1.1.3)

mx = β(HV − V 2) + δC + γ∂2xC + ε∂4xC (1.1.4)

my = β(HV −H2) + δC + γ∂2yC + ε∂4yC (1.1.5)

Here ∇2 represents the two dimensional Laplacian, and the independent and depen-

dent variables are given by the following:

• C represents the quantity of deposited wax

• H represents the average density of bees parallel to XZ plane

• V represents the average density of bees parallel to YZ plane

• x and y are the spatial variables

• t represents the time that has passed since the honeycomb construction began

The parameters and terms in the model are explained below:

• θ represents the coefficient of difussion control
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• φ represents the flux of differently oriented bees which come into the considered

volume on the top of the beehive

• τH, τV correspond to the loss of some bees which leave or change orientation

• α(H+V ) gives the change in the wax distribution caused by the newly brought

wax

• νC represents the removed or fallen wax

• (H + V )D∇2C represents the wax deposited due to imitation

• β(HV − (H/V )2) accounts for the local coupling between H and V which con-

tains respectively the gain term corresponding to the reorientation of the V/H

bees due to the presence of the H/V bees and the loss term which corresponds

to the reorientation of the H/V bees through an “autocatalitic reaction”

• δC+γ∂2x/yC+ε∂4x/yC describes the attraction of the bees to the wax and various

gradients of the wax distribution

Equivalently the model can be written in the form given below:

∂tH = θ(∂xxH + ∂yyH) + φ− τH +mxH (1.1.6)

∂tV = θ(∂xxV + ∂yyV ) + φ− τV +myV (1.1.7)

∂tC = (H + V )D(∂xxC + ∂yyC) + α(H + V )− νC (1.1.8)

mx = β(HV −H2) + δC + γ∂2xC + ε∂4xC (1.1.9)

my = β(HV − V 2) + δC + γ∂2yC + ε∂4yC (1.1.10)
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1.2 Stationary Solutions

To find the stationary solutions of the system the time and space derivatives are set

to zero.

0 = φ− τH +mxH (1.2.1)

0 = φ− τV +myV (1.2.2)

0 = α(H + V )− νC (1.2.3)

mx = β(HV − V 2) + δC (1.2.4)

my = β(HV −H2) + δC (1.2.5)

There are three possibilities for the steady states of the density of bees and in all

cases the concentration of wax stays the same.

H =
φ

τ
V =

φ

τ
(1.2.6)

H =
φ

τ
+
(φ2

τ 2
− τ

2β
)1/2 V =

φ

τ
−
(φ2

τ 2
− τ

2β
)1/2 (1.2.7)

H =
φ

τ
−
(φ2

τ 2
− τ

2β
)1/2 V =

φ

τ
+
(φ2

τ 2
− τ

2β
)1/2 (1.2.8)

C =
α

ν
(H + V ) =

2αφ

ντ
(1.2.9)

Solutions (1.2.6) represents the steady state when the density of bees parallel to the

XZ plane (H) and YZ plane (V) are the same. In solution (1.2.7) H has the larger

value and in solution (1.2.8) V has the larger value. To stay in the feasible region

where H, V , and C will be greater than or equal to zero we must have φ > φc where

φc =
(
τ2

2β

)1/2
. If φc < φ the only stationary solution that exists is (1.2.6).
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Chapter 2

Numerical Scheme

A PDE model for honeycomb construction that captures several of the nuances of

bee building behavior has been proposed and previously implemented with a spectral

algorithm based on a modified thin-sheet gain scheme and a fast Fourier transform

technique for treatment of the equations [15]. With today’s easy access to advanced

computers finite differences are fairly easy to implement for a numerical solution to

PDE’s. In this thesis we hope to gain equivalent or better results using this technique.

We begin this chapter by applying the finite difference technique to discretize

the model. We use a forward difference approximation for the time derivatives and

central difference approximations for the second and fourth spatial derivatives, and

we solve the resulting equations for the latest time step. Because finite differences

uses approximations for the derivatives we follow up by calculating the error that was

introduced with the method by using Taylor series expansions and then determining

the order for the truncation error.
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2.1 Finite Difference Scheme

The partial derivatives are approximated by

∂tH ≈ H(xk, yi, tn+1)−H(xk, yi, tn)

∆t

∂tV ≈ V (xk, yi, tn+1)− V (xk, yi, tn)

∆t

∂tC ≈ C(xk, yi, tn+1)− C(xk, yi, tn)

∆t

∇2H ≈ H(xk+1, yi, tn)− 2H(xk, yi, tn) +H(xk−1, yi, tn)

(∆x)2

+
H(xk, yi+1, tn)− 2H(xk, yi, tn) +H(xk, yi−1, tn)

(∆y)2

∇2V ≈ V (xk+1, yi, tn)− 2V (xk, yi, tn) + V (xk−1, yi, tn)

(∆x)2

+
V (xk, yi+1, tn)− 2V (xk, yi, tn) + V (xk, yi−1, tn)

(∆y)2

∇2C ≈ C(xk+1, yi, tn)− 2C(xk, yi, tn) + C(xk−1, yi, tn)

(∆x)2

+
C(xk, yi+1, tn)− 2C(xk, yi, tn) + C(xk, yi−1, tn)

(∆y)2

∂2xC ≈ C(xk+1, yi, tn)− 2C(xk, yi, tn) + C(xk−1, yi, tn)

(∆x)2

∂2yC ≈ C(xk, yi+1, tn)− 2C(xk, yi, tn) + C(xk, yi−1, tn)

(∆y)2

(2.1.1)
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∂4xC ≈ C(xk+2, yi, tn)− 4C(xk+1, yi, tn) + 6C(xk, yi, tn)− 4C(xk−1, yi, tn) + C(xk−2, yi, tn)

(∆x)4

∂4yC ≈ C(xk, yi+2, tn)− 4C(xk, yi+1, tn) + 6C(xk, yi, tn)− 4C(xk, yi−1, tn) + C(xk, yi−2, tn)

(∆y)4

For convenience, we let Un
k,i = U(xk, yi, tn) and then substitute the partial deriva-

tive approximations into the model.

So equations (1.1.6 – 1.1.10) become

Hn+1
k,i −Hn

k,i

∆t
= θ

[Hn
k+1,i − 2Hn

k,i +Hn
k−1,i

(∆x)2
+
Hn
k,i+1 − 2Hn

k,i +Hn
k,i−1

(∆y)2

]
+ φ− τHn

k,i + m̂xH
n
k,i (2.1.2)

V n+1
k,i − V n

k,i

∆t
= θ

[V n
k+1,i − 2V n

k,i + V n
k−1,i

(∆x)2
+
V n
k,i+1 − 2V n

k,i + V n
k,i−1

(∆y)2

]
+ φ− τV n

k,i + m̂yV
n
k,i (2.1.3)

Cn+1
k,i − Cn

k,i

∆t
= (Hn

k,i + V n
k,i)D

[Cn
k+1,i − 2Cn

k,i + Cn
k−1,i

(∆x)2

+
Cn
k,i+1 − 2Cn

k,i + Cn
k,i−1

(∆y)2

]
+ α(Hn

k,i + V n
k,i)− νCn

k,i (2.1.4)

m̂x = β(Hn
k,iV

n
k,i − (V n

k,i)
2) + δCn

k,i + γ
Cn
k+1,i − 2Cn

k,i + Cn
k−1,i

(∆x)2

+ ε
Cn
k+2,i − 4Cn

k+1,i + 6Cn
k,i − 4Cn

k−1,i + Cn
k−2,i

(∆x)4
(2.1.5)

m̂y = β(Hn
k,iV

n
k,i − (Hn

k,i)
2) + δCn

k,i + γ
Cn
k,i+1 − 2Cn

k,i + Cn
k,i−1

(∆y)2

+ ε
Cn
k,i+2 − 4Cn

k,i+1 + 6Cn
k,i − 4Cn

k,i−1 + Cn
k,i−2

(∆y)4
(2.1.6)
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Then solving the model for time = tn+1 yields the following equations:

Hn+1
k,i = ∆t

(
θ
[Hn

k+1,i − 2Hn
k,i +Hn

k−1,i

(∆x)2
+
Hn
k,i+1 − 2Hn

k,i +Hn
k,i−1

(∆y)2

]
+ φ− τHn

k,i + m̂xH
n
k,i

)
+Hn

k,i (2.1.7)

V n+1
k,i = ∆t

(
θ
[V n

k+1,i − 2V n
k,i + V n

k−1,i

(∆x)2
+
V n
k,i+1 − 2V n

k,i + V n
k,i−1

(∆y)2

]
+ φ− τV n

k,i + m̂yV
n
k,i

)
+ V n

k,i (2.1.8)

Cn+1
k,i = ∆t

(
(Hn

k,i + V n
k,i)D

[Cn
k+1,i − 2Cn

k,i + Cn
k−1,i

(∆x)2

+
Cn
k,i+1 − 2Cn

k,i + Cn
k,i−1

(∆y)2

]
+ α(Hn

k,i + V n
k,i)− νCn

k,i

)
+ Cn

k,i (2.1.9)

m̂x = β(Hn
k,iV

n
k,i − (V n

k,i)
2) + δCn

k,i + γ
Cn
k+1,i − 2Cn

k,i + Cn
k−1,i

(∆x)2

+ ε
Cn
k+2,i − 4Cn

k+1,i + 6Cn
k,i − 4Cn

k−1,i + Cn
k−2,i

(∆x)4
(2.1.10)

m̂y = β(Hn
k,iV

n
k,i − (Hn

k,i)
2) + δCn

k,i + γ
Cn
k,i+1 − 2Cn

k,i + Cn
k,i−1

(∆y)2

+ ε
Cn
k,i+2 − 4Cn

k,i+1 + 6Cn
k,i − 4Cn

k,i−1 + Cn
k,i−2

(∆y)4
(2.1.11)

which defines our finite difference scheme.
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2.2 Truncation Error

To determine the local truncation errors, τn, we look at the error when the exact so-

lution is applied to the difference scheme. We define the truncation error for H(x,y,t),

V(x,y,t) and C(x,y,t) by the following:

τHn =
H(x, y, t+ ∆t)−H(x, y, t)

∆t
− θ
[H(x+ ∆x, y, t)− 2H(x, y, t) +H(x−∆x, y, t)

(∆x)2

+
H(x, y + ∆y, t)− 2H(x, y, t) +H(x, y −∆y, t)

(∆y)2

]
−φ+ τH(x, y, t)−mxH(x, y, t) (2.2.1)

τVn =
V (x, y, t+ ∆t)− V (x, y, t)

∆t
− θ
[V (x+ ∆x, y, t)− 2V (x, y, t) + V (x−∆x, y, t)

(∆x)2

+
V (x, y + ∆y, t)− 2V (x, y, t) + V (x, y −∆y, t)

(∆y)2

]
−φ+ τV (x, y, t)−myV (x, y, t) (2.2.2)

τCn =
C(x, y, t+ ∆t)− C(x, y, t)

∆t
− (H(x, y, t) + V (x, y, t))

D
[C(x+ ∆x, y, t)− 2C(x, y, t) + C(x−∆x, y, t)

(∆x)2

+
C(x, y + ∆y, t)− 2C(x, y, t) + C(x, y −∆y, t)

(∆y)2

]
−α(H(x, y, t) + V (x, y, t)) + νC(x, y, t)

(2.2.3)
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We use Taylor series expansion to obtain expressions for the truncation errors.

Now,

C(x, y, t+ ∆t)− C(x, y, t)

∆t
=

1

∆t

[
∆tCt +

(∆t)2

2!
Ctt +

(∆t)3

3!
Cttt + . . .

]
= Ct +

∆t

2!
Ctt +

(∆t)2

3!
Cttt + . . .

Let,

Ec =
C(x+ ∆x, y, t)− 2C(x, y, t) + C(x−∆x, y, t)

(∆x)2
(2.2.4)

Then

Ec =
1

(∆x)2

[
C + ∆xCx +

(∆x)2

2!
Cxx +

(∆x)3

3!
Cxxx + . . .− 2C + C −∆xCx

+
(∆x)2

2!
Cxx −

(∆x)3

3!
Cxxx + . . .

]
=

1

(∆x)2

[2(∆x)2

2!
Cxx +

2(∆x)4

4!
Cxxxx + . . .

]
= Cxx +

2(∆x)2

4!
Cxxxx + . . . (2.2.5)

Similarly,

C(x, y + ∆y, t)− 2C(x, y, t) + C(x, y −∆y, t)

(∆y)2
= Cyy +

2(∆y)2

4!
Cyyyy + . . .(2.2.6)

There are equivalent equations for V and H.
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Substituting the Taylor Series Expansions into (2.2.1 – 2.2.3) we have the follow-

ing:

τHn =
[(∆t)

2!
Htt +

(∆t)2

3!
Httt + . . .

]
− θ
[2(∆x)2

4!
Hxxxx + . . .

+
2(∆y)2

4!
Hyyyy + . . .

]
(2.2.7)

τVn =
[(∆t)

2!
Vtt +

(∆t)2

3!
Vttt + . . .

]
− θ
[2(∆x)2

4!
Vxxxx + . . .

+
2(∆y)2

4!
Vyyyy + . . .

]
(2.2.8)

τCn =
[(∆t)

2!
Ctt +

(∆t)2

3!
Cttt + . . .

]
− (H + V )D

[2(∆x)2

4!
Cxxxx + . . .

+
2(∆y)2

4!
Cxxxx + . . .

]
(2.2.9)

because,

Ht − θ(Hxx +Hyy)− φ+ τH −mxH = 0 (2.2.10)

Vt − θ(Vxx + Vyy)− φ+ τV −myV = 0 (2.2.11)

Ct − (H + V )D[Cxx + Cyy]− α(H + V ) + νC = 0 (2.2.12)

so, the truncation error for τHn , τ
V
n , τ

C
n is of order O(∆t, (∆x)2, (∆y)2).
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Chapter 3

Numerical Results

When modeling a physical event uncertainties can arise from countless sources (e.g.

natural variation, measurement error, insufficient measurement techniques, etc.) In

particular the accuracy of results is often complicated by the presence of uncertain-

ties in experimental data that are used to estimate parameter values. It has been

suggested that a way to improve the model for honeycomb construction is to test

thoroughly the range of parameters and their relative importance [2]. We begin this

chapter by stating the stationary solutions to the PDE system and observing the ef-

fect that the parameter values may have on these steady states. We list the four sets

of initial conditions we consider for the system and conduct uncertainty and sensitiv-

ity analysis on a subset of the parameters for each initial condition at two different

times. The uncertainty analysis (UA) investigates how much of the uncertainty in

the model output can be attributed to uncertainties in the parameter inputs. The

sensitivity analysis allows us to study how the variations in the model outputs can

be attributed, either qualitatively or quantitatively, to different input sources [13].
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3.1 Initial Conditions

Four different sets of initial conditions are considered:

H(x, y, 0) = F [e−Gx
2

+ 1] with F = 0.01 and G = 4,

V (x, y, 0) = 0.01 or some small value (because no y modulation) (3.1.1)

C(x, y, 0) = 0.01 or some small value (because the initial wax distribution was thin

and flat.)

H(x, y, 0) = F [e−Gx
2

+ 1][e−Py
2

]

V (x, y, 0) = 0.01[e−Py
2

] (3.1.2)

C(x, y, 0) = 0.01

with F = 0.01 ; G = 4 ; P = 0.01

H(x, y, 0) = e−P (x2+y2)

V (x, y, 0) = e−P (x2+y2) (3.1.3)

C(x, y, 0) = e−Py
2

with P = 0.1

H(x, y, 0) = e−P (x2+y2)

V (x, y, 0) = e−P (x2+y2) (3.1.4)

C(x, y, 0) = [1 + sin(3x+
κ

2
)]e−Py

2

with P = 0.01
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Notice for all sets of initial conditions we incorporate at least one exponential

function. This is to mimic the elliptical shape of the honeycombs.

3.2 Parameter Estimation

3.2.1 Uncertainty Analysis- UA

The most common sampling based methods to perform UA are Monte Carlo methods.

We will use a Latin hypercube sampling (LHS) technique because of its efficient im-

plementation to draw our samples. LHS is a stratified sampling without replacement

technique. A matrix is generated that consists of N rows, the number of stratifica-

tions, by K columns corresponding to the number of varied parameters [13]. N model

solutions are then simulated, using each combination of parameter values. In general

the LHS technique requires a smaller sample size than other Monte Carlo methods

to achieve the same level of accuracy.

Example 1. Let a ∼ Unif(60, 90), b ∼ Unif(10, 50), and c ∼ Unif(0, 15). When

n=5 one possible sampling from each bin is given by {60,68,72,81,85} for a, {15,24,31,41,43}

for b, and {1,5,8,10,13} for c. A corresponding LHS is given by

C =



81 24 10

72 43 5

68 31 8

85 41 1

60 15 13


(3.2.1)

The purpose of UA in this thesis is to quantify the degree of confidence for our

parameter values. We assume a uniform distribution for the parameters D, α, ν, θ,

and τ . We then use a LHS technique to draw our samples for statistical analysis. We
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plot the outputs of mean wax, maximum wax, mean of XZ oriented bees, and mean

of YZ oriented bees versus the sampled parameter values to check for monotonicity.

The partial rank correlation coefficient (PRCC) measures the residuals from one pa-

rameter at a time while controlling for the effects of the other parameters. We use the

PRCC, which is extremely effective at determining the sensitivity of highly monotonic

parameters, to determine the strength of the relationship between the parameter val-

ues and the outputs. We set the significance level, α, at 0.05. If our p-value is less

than α we reject the null hypothesis that the parameter value has no effect on the

model and conclude that the PRCC value is statistically significant. The uniform

distribution whence we draw our samples is given in Figure 3.2.1 and a sample LHS

plot for the parameters of D, α, and ν is given in Figure 3.2.2.

Figure 3.2.1: Uniform Distribution for Parameters D, α, ν, θ, and τ .
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Figure 3.2.2: Sample LHS Plot for Paramters D, α, and ν.

In Figure 3.2.3, we see that for the output of mean wax concentration there is

a positive correlation between the output and the parameters of D and ν; for the

remaining parameters the correlation is negative. The plots of outputs versus pa-

rameters all display highly monotonic behavior with a single exception. This implies

that overall the parameters from equations (1.1.1 - 1.1.3) are good candidates for a

PRCC examination. The exception occurs in the plot of mean concentration of bees

parallel to the XZ plane versus α. This plot begins by increasing until approximately

α = 20 then decreases for the remaining α values. For this particular case, it may

have yielded more accurate results for the PRCC calculations if we ran the calculation

separately for each interval.
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Figure 3.2.3: Monotonicity Plots for IC3 at t=0.2
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Results: Experiment 1 - Initial Condition (3.1.1) at t=0.2

Max. Wax Mean Conc. Mean XZ
PRCC p-value PRCC p-value PRCC p-value

D 0.82288 2.39E-08* 0.58777 0.000637* -0.93416 4.69E-14*
α 0.9831 3.43E-22* 0.99823 7.08E-36* -0.98624 1.97E-23*
ν -0.037513 0.84398 -0.13568 0.47467 -0.1379 0.4674
θ -0.14521 0.4439 -0.21429 0.2555 0.085667 0.65263
τ 0.25684 0.17066 0.004734 0.98019 -0.2087 0.2684

Mean YZ
PRCC p-value

D -0.096382 0.6124
α 0.96767 2.74E-18*
ν 0.11014 0.56233
θ -0.06807 0.7208
τ -0.98778 3.74E-24*

Table 3.1: Experiment 1 - Initial Condition (3.1.1) at t=0.2

We consider p-values less than 0.05 as statistically significant. We consider PRCC

values greater than 0.75 as having a strong effect, between 0.5 and 0.75 as having a

moderate effect, and between 0.25 and 0.5 as having a weak effect. The results given

in Table 3.1 indicate that when the initial conditions for V (x, y, 0) and C(x, y, 0) are

constant and the initial condition for H(x, y, 0) only depends on x, as in (3.1.1),

we find that the parameters that are statistically significant are D, α, and τ . In this

experiment α has a strong effect on all the outputs, D has a strong effect on maximum

wax concentration and mean density of bees parallel to the YZ plane, and τ has a

strong effect on the mean density of bees parallel to the YZ plane. The effect of D on

mean concentration of wax is moderate. The p-values larger than 0.05 indicate that

with this set of initial conditions the parameters ν and θ do not affect the model. In

this case, we conclude that overall α seems to be the parameter that most affects the

outputs of the model.
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Results: Experiment 2 - Initial Condition (3.1.2) at t=0.2

Max. Wax Mean Conc. Mean XZ
PRCC p-value PRCC p-value PRCC p-value

D 0.94885 1.59E-15* 0.93431 4.55E-14* -0.92121 5.35E-13*
α 0.97424 1.19E-19* 0.98134 1.36E-21* -0.98555 3.87E-23*
ν -0.0024312 0.98983 0.11171 0.55675 -0.099744 0.59999
θ -0.049934 0.79329 -0.12337 0.51601 0.091145 0.63193
τ -0.12077 0.52497 0.15385 0.41695 -0.22757 0.22649

Mean YZ
PRCC p-value

D -0.7256 5.70E-06*
α 0.91622 1.22E-12*
ν 0.28717 0.12389
θ -0.0058422 0.97556
τ -0.45545 0.011435*

Table 3.2: Experiment 2 - Initial Condition (3.1.2) at t=0.2

The results given in Table 3.2 indicate that when the initial condition for V (x, y, 0)

depends only on y, C(x, y, 0) is constant, and H(x, y, 0) depends on both x and y we

can conclude that the effect of α is strong for all outputs. The effect of D is also

strong for all outputs with one exception. For the output of the mean concentration

of bees parallel to the YZ plane we find D has a moderate effect. We also find that

τ has a weak effect for the output of the mean concentration of bees parallel to the

YZ plane. P-values larger than 0.05 indicate that the parameters of ν and θ have

no significant effects on the model. The parameter of α seems to have the strongest

effect on the model overall when considering initial condition (3.1.2).

Results: Experiment 3 - Initial Condition (3.1.3) at t=0.2

Results for experiment 3 are given in Table 3.3. We find that the output of maximum

wax concentration is strongly affected by the parameter D, moderately affected by α

and weakly affected by θ. Mean wax concentration is also strongly affected by D and
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Max. Wax Mean Conc. Mean XZ
PRCC p-value PRCC p-value PRCC p-value

D 0.99582 1.19E-30* 0.99937 4.19E-42* -0.8784 1.77E-10*
α -0.74466 2.37E-06* -0.21254 0.25949 -0.90594 5.80E-12*
ν 0.31174 0.093539 0.47228 0.00841* 0.14993 0.42907
θ -0.44699 0.013271* -0.1567 0.40828 0.003316 0.98613
τ 0.029127 0.87857 -0.38721 0.034515* 0.008027 0.96642

Mean YZ
PRCC p-value

D -0.99958 1.20E-44*
α 0.10712 0.57314
ν -0.22794 0.22573
θ 0.20102 0.28681
τ 0.22759 0.22644

Table 3.3: Experiment 3 - Initial Condition (3.1.3) at t=0.2

weakly affected by ν and τ . The parameter α and then D both have a strong effect on

the output of the mean concentration of bees parallel to the XZ plane. D is the only

parameter that shows a statistically significant effect on the mean concentration of

bees parallel to the YZ plane and the effect is strong. Overall it is worth emphasizing

that for three out of four outputs the parameter of D has the strongest effect; and

in all four cases the effect of D is considered strong. We conclude that for initial

condition (3.1.3), D is the parameter that most affects the outputs of the model.

Results: Experiment 4 - Initial Condition (3.1.4) at t=0.2

The same initial conditions are used in experiment 4 as in experiment 3 with the

alteration of multiplying the C(x,y,0) initial condition by a sinusoid. The results are

given in Table 3.4. We now find that only the parameters of D and α are statistically

significant. D has a perfect PRCC value of 1 for all outputs. The parameter α has a

strong effect on all outputs. It is worth noting that for the output, mean concentration

of bees parallel to the XZ plane, D and α seem to work opposite of one another. Both
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Max. Wax Mean Conc. Mean XZ
PRCC p-value PRCC p-value PRCC p-value

D 1 0* 1 0* 1 0*
α 0.97424 1.19E-19* 0.98134 1.36E-21* -0.98555 3.87E-23*
ν -0.015278 0.93613 -0.015278 0.93613 -0.015278 0.93613
θ 0.1033 0.58698 0.1033 0.58698 0.1033 0.58698
τ -0.12309 0.51696 -0.12309 0.51696 -0.12309 0.51696

Mean YZ
PRCC p-value

D 1 0*
α 0.91622 1.22E-12*
ν -0.10678 0.57437
θ 0.11528 0.54412
τ 0.025614 0.89312

Table 3.4: Experiment 4 - Initial Condition (3.1.4) at t=0.2

have similar PRCC values in magnitude but with opposite direction ( i.e. PRCC value

of 1 for D versus PRCC value of -0.9855 for α.) We find the opposite effect for the

mean concentration of bees parallel to the YZ plane. We conclude that for initial

condition (3.1.4) both the parameters of D and α seem to have large effects on the

model with the effect of D only slightly stronger.

Overall: Results at t=0.2

For two out of four experiments the parameter D is found to have the strongest effect

overall on the system. In the two experiments where D is not the strongest parameter,

α is found to have the greatest effect on the system. The parameters ν and θ are

only significant when we consider initial condition (3.1.3) and both of their effects

we categorize as weak. It is worth noting how the effect of parameter τ changes based

on the initial condition considered. With initial condition (3.1.3) it has a weak effect

on the mean concentration of wax, with initial condition (3.1.2) it has a weak effect

on the mean density of bees parallel to the YZ plane, with initial condition (3.1.1)
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it has a strong effect on the mean density of bees parallel to the YZ plane, and with

initial condition (3.1.4) it has no significant effect.

Results: Experiment 1 - Initial Condition (3.1.1) at t=0.4

Max. Wax Mean Conc. Mean XZ
PRCC p-value PRCC p-value PRCC p-value

D 0.92228 4.44E-13* 0.91854 8.38E-13* -0.89821 1.67E-11*
α 0.98604 2.41E-23* 0.98532 4.81E-23* -0.98545 4.28E-23*
ν 0.098365 0.60506 0.080178 0.67363 -0.11669 0.53916
θ -0.22033 0.24202 -0.23317 0.21495 0.30431 0.10205
τ 0.21902 0.24491 0.17158 0.36463 -0.20938 0.2668

Mean YZ
PRCC p-value

D 0.3317 0.073342
α 0.98563 3.59E-23*
ν 0.053371 0.7794
θ -0.30102 0.106
τ -0.97639 3.55E-20*

Table 3.5: Experiment 1 - Initial Condition (3.1.1) at t=0.4

The results for initial conditions (3.1.1) at t = 0.4 can be found in Table 3.5. We

find similar results to those at t = 0.2. The parameter α seems to make the greatest

contribution. It has a strong effect on all outputs and D, as well, has a strong effect

for all outputs with the exception of the mean density of bees parallel to the YZ

plane.
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Results: Experiment 2 - Initial Condition (3.1.2) at t=0.4

Max. Wax Mean Conc. Mean XZ
PRCC p-value PRCC p-value PRCC p-value

D 0.92121 5.35E-13* 0.93593 3.24E-14* -0.91854 8.387E-13*
α 0.98555 3.87E-23* 0.98447 1.06E-22* -0.98532 4.81E-23*
ν 0.099744 0.59999 0.17093 0.36647 -0.080178 0.67363
θ -0.091145 0.63193 -0.15775 0.40509 0.23317 0.21495
τ 0.22757 0.22649 0.17158 0.13072 -0.17158 0.36463

Mean YZ
PRCC p-value

D -0.93045 9.89E-14*
α -0.9866 1.369E-23*
ν -0.10841 0.56852
θ 0.06645 0.72718
τ -0.21131 0.26233

Table 3.6: Experiment 2 - Initial Condition (3.1.2) at t=0.4

The results for initial condition (3.1.2) at time t = 0.4 can be found in Table 3.6.

The only parameters that are found to have an effect on the outputs of the model are

D and α and they have a strong effect on all of the outputs. It is worth noting that

as the time increased from t = 0.2 to 0.4 the effect of D on the mean concentration

of bees parallel to the YZ axis increased from moderate to strong and the effect of τ ,

which was weak previously, is now not significant.

Results: Experiment 3 - Initial Condition (3.1.3) at t=0.4

The results for experiment 3 are given in Table 3.7. We find that when we double

the time, all parameters are now found to be statistically significant in contributing

to the outputs of maximum wax concentration and the mean density of bees parallel

to the YZ plane. For both of the outputs D and α have a strong effect, whereas τ , ν,

and θ have a weak effect. When we examine the mean concentration of wax, we find
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Max. Wax Mean Conc. Mean XZ
PRCC p-value PRCC p-value PRCC p-value

D 0.99577 1.42E-30* 0.9963 2.1457E-31* -0.86172 9.63E-10*
α 0.88422 9.2579E-11* 0.74113 2.8064E-06* -0.95342 4.1645E-16*
ν 0.38213 0.03717* 0.20599 0.27481 0.057747 0.76181
θ -0.37707 0.039971* -0.29967 0.10766 -0.020161 0.91578
τ -0.40108 0.028046* -0.34706 0.060243 -0.067066 0.72475

Mean YZ
PRCC p-value

D -0.99583 1.1418E-30*
α -0.88974 4.8438E-11*
ν -0.37638 0.040367*
θ 0.38998 0.033136*
τ 0.46148 0.01026*

Table 3.7: Experiment 3 - Initial Condition (3.1.3) at t=0.4

D has a strong effect and α has a moderate effect. For the output of mean density of

bees parallel to the XZ plane both D and α have a strong effect.

Results: Experiment 4 - Initial Condition (3.1.4) at t=0.4

The results for (3.1.4) can be found in Table 3.8. In comparison to time t = 0.2, D

is still found to have a strong effect with a perfect PRCC value, but now the effect

of α is not found to be significant.

Overall: Results at t=0.4

For all initial conditions the parameter D has a strong effect on the model with the

single exception of, initial condition (3.1.1), mean density of bees parallel to the YZ

plane in which case the D is not found to be significant. Excluding initial condition

(3.1.4), the parameter α has a strong effect on the model for all initial conditions

considered with the one exception of, initial condition (3.1.3), mean concentration
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Max. Wax Mean Conc. Mean XZ
PRCC p-value PRCC p-value PRCC p-value

D 1 0* 1 0* 1 0*
α -0.015278 0.93613 -0.015278 0.93613 -0.015278 0.93613
ν -0.27584 0.1401 -0.27584 0.1401 -0.27584 0.1401
θ 0.1033 0.58698 0.1033 0.58698 0.1033 0.58698
τ -0.12309 0.51696 -0.12309 0.51696 -0.12309 0.51696

Mean YZ
PRCC p-value

D -1 0*
α -0.10678 0.57437
ν -0.042302 0.82435
θ 0.11528 0.54412
τ 0.025614 0.89312

Table 3.8: Experiment 4 - Initial Condition (3.1.4) at t=0.4

of wax, in which case the effect of α is moderate. For initial condition (3.1.3), the

remaining parameters, ν, θ, and τ , each have a weak effect on the outputs of maximum

concentration of wax and mean density of bees parallel to the YZ plane.
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3.2.2 Sensitivity Analysis- SA

SA can be used in the field of numerical simulation, where mathematical and compu-

tational models are used for the study of systems, especially complex ones. SA helps

to understand the behavior of a model, the coherence between a model and the world,

and how different parts of the model interplay [5]. SA provides a way to identify which

model inputs have the strongest effect on the uncertainty in the model predictions.

SA can be divided into two compartments, local and global. Local SA methods are

used when input parameters are relatively certain. When larger finite regions for the

parameters values need to be explored global SA methods are implemented. Sev-

eral different approaches have been attempted for global sensitivity analysis, due to

the intrinsic difficulty of building an effective and rigorous measurement over a finite

space of variation for the inputs. In this thesis we use the global SA method of an

extended Fourier amplitude test.

eFAST developed by Saltelli and Bolado is based on the original FAST. eFAST is a

variance decomposition method where input parameters are varied causing variation

in model output. The variation is quantified using the statistical notion of variance

s2 =
∑N

i=1(yi − ȳ)2/(N − 1), where N = sample size, yi = ith model output, and

ȳ = sample mean. The algorithm then partitions the output variance, determining

what fraction of the variance can be explained by variation in each input parameter.

Partitioning of variance in eFAST works by varying different parameters at different

frequencies, encoding the identity of parameters in the frequency of their variation.

Fourier analysis then measures the strength of each parameter’s frequency in the

model output. Thus, how strongly a parameter’s frequency propagates from input,

through the model, to the output serves as a measure of the model’s sensitivity to the

parameter. Using eFAST we are able to calculate both the first order sensitivity and

the total order sensitivity for any chosen parameter. A first order sensitivity index,

Si, of a given parameter i, is calculated as the variance at a particular parameter’s
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unique frequency divided by total variance. First variance s2i is calculated from the

Fourier coefficients at the frequency of interest, j: s2i = 2(A2
j + B2

j ) where Aj =

1
π

∫ π
−π f(x)cos(jx)dx and Bj = 1

π

∫ π
−π f(x)sin(jx)dx. The first order Si = s2i /s

2
total .

This index represents the fraction of model output variance explained by the input

variation of a given parameter. To estimate the total order sensitivity index, ST i, of a

given parameter i, eFAST first calculates the summed sensitivity index of the entire

complementary set of parameters. ST i is then calculated as the remaining variance

after the contribution of the complementary set,Sci, is removed, so ST i = 1 − Sci.

Using this method we are able to rank the parameters and determine which have

the strongest effect on the model. A dummy variable is put to use with the eFAST

method to test for statistical significance. Parameters with a total order sensitivity

index less than or equal to that of the dummy variable should be considered not

significantly different from zero. The eFAST method also computes the coefficient

of variation (CV) for both the Si and STi. CV measures the dispersion of the data

relative to the mean.
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Experiment 1

The eFAST results for the simulation carried out for mean wax concentration at t =

0.2 are provided in the tables below.

Parameter i D α ν θ τ d
Si 0.0024 0.9942 0.0000 0.0000 0.0000 0.0000
STi 0.0067 0.9976 0.0024 0.0025 0.0026 0.0024

CV(Si) 5.0486 0.1580 27.2939 96.9980 19.0110 107.9855
CV( STi) 22.2578 0.0726 6.7396 10.0116 13.0809 9.1359

Table 3.9: Effect on mean wax concentration at t = 0.2 initial condition (3.1.1)

Parameter i D α ν θ τ d
Si 0.2341 0.6352 0.0001 0.0004 0.0002 0.0002
STi 0.3480 0.7648 0.0021 0.0057 0.0025 0.0034

CV(Si) 1.1587 3.8220 49.6036 116.4429 66.2438 93.1258
CV( STi) 1.8913 1.1634 90.2786 70.3906 83.6615 46.9087

Table 3.10: Effect on mean wax concentration at t = 0.2 initial condition (3.1.2)

Parameter i D α ν θ τ d
Si 0.9941 0.0023 0.0002 0.0003 0.0005 .0003
STi 0.9983 0.0077 0.0046 0.0053 0.0054 .0048

CV(Si) 0.1034 44.2524 6.5588 38.7963 40.2168 10.7366
CV( STi) 0.0256 28.3289 7.5820 7.3305 9.9322 5.6942

Table 3.11: Effect on mean wax concentration at t = 0.2 initial condition (3.1.3)

Parameter i D α ν θ τ d
Si 0.9926 0.0005 0.0005 0.0005 0.0005 0.0005
STi 0.9995 0.0078 0.0077 0.0076 0.0073 0.0074

CV(Si) 0.0229 6.6225 5.5411 4.2270 3.0846 7.1046
CV( STi) 0.0029 3.5772 2.9626 2.3241 1.3876 3.6360

Table 3.12: Effect on mean wax concentration at t = 0.2 initial condition (3.1.4)
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Experiment 2

The eFAST results for the simulation carried out for mean wax concentration at t =

0.4 are provided in the tables below.

Parameter i D α ν θ τ d
Si 0.1723 0.6805 0.0004 0.0008 0.0005 0.0005
STi 0.3163 0.8277 0.0056 0.0067 0.0050 0.0053

CV(Si) 4.5728 5.0559 66.0955 100.8445 86.3217 52.3576
CV( STi) 7.1874 1.6628 64.2175 29.1694 41.4134 52.1178

Table 3.13: Effect on mean wax concentration at t = 0.4 initial condition (3.1.1)

Parameter i D α ν θ τ d
Si 0.1970 0.6771 0.0002 0.0013 0.0006 0.0004
STi 0.3347 0.8065 0.0037 0.0107 0.0080 0.0061

CV(Si) 3.5097 2.2886 21.0124 62.3198 43.5403 48.0610
CV( STi) 5.3644 0.2529 40.4682 52.9186 53.0907 51.8937

Table 3.14: Effect on mean wax concentration at t = 0.4 initial condition (3.1.2)

Parameter i D α ν θ τ d
Si 0.9674 0.0164 0.0002 0.0004 0.0010 0.0002
STi 0.9829 0.0282 0.0050 0.0049 0.0058 0.0047

CV(Si) 0.3515 14.7665 32.9325 62.6571 45.2834 16.5077
CV( STi) 0.1882 26.6968 21.9682 9.0098 26.0924 18.3368

Table 3.15: Effect on mean wax concentration at t = 0.4 initial condition (3.1.3)

Parameter i D α ν θ τ d
Si 0.9927 0.0005 0.0005 0.0005 0.0005 0.0005
STi 0.9995 0.0073 0.0073 0.0074 0.0076 0.0077

CV(Si) 0.0247 5.3317 4.4518 6.1752 10.0265 5.5878
CV( STi) 0.0030 2.5252 2.3227 3.1673 5.2370 3.0471

Table 3.16: Effect on mean wax concentration at t = 0.4 initial condition (3.1.4)
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Results - Experiment 1

The results for experiment 1 are given in Tables 3.9 - 3.12. For all parameters the total

effects are stronger than the individual effects. We use the Si and Sti values larger

than the dummy variable to rank the parameters effects. For initial conditions (3.1.3)

and (3.1.4), D by far has the strongest total effect followed by α. In the former, τ and

θ are found to be significant; in the latter, ν and θ are found to be significant. For

initial condition (3.1.4) D is the only parameter with an individual effect. For initial

conditions (3.1.1) and (3.1.2), α followed by D have the most substantial effects.

Results - Experiment 2

The results for experiment 2 are given in Tables 3.13 - 3.16. When the time is increased

to t = 0.4 , although we still have D with the leading effect for initial condition (3.1.3)

for both Si and Sti, its effect starts to decrease and the other parameters increase their

effects. We see the same pattern with initial condition (3.1.1). The previous leading

parameter, in this case α, keeps its position as leading parameter, but its effect starts

to decrease and the effects of the other parameters begin to increase. The opposite

happens with initial condition (3.1.4). The effect of the leading parameter D increases

or stays the same and both the individual and total effects for all other parameters

become no longer significant. For initial condition (3.1.2) α keeps its position as

the leading parameter and continues to increase its effect while all other parameters

except for D also increase their effects. Although the total effect of D does decrease

it keeps its position as the parameter with the second strongest effect. Overall, with

the exception of initial condition (3.1.4), with an increase in time we see an increase

in the effect of the parameters on the model.
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Chapter 4

Actual Honey Combs versus

Models

4.1 Ratios of Major to Minor Axis

Figure 4.1.1: Wild hive displaying a parallelism between combs

It is evident that honeycombs display an elliptical form during stages of construc-

tion. And it has been stated in the literature that the construction of honeycomb is

not a random process, but follows the mathematical rules involving the golden ratio

[9]. We begin this chapter by searching for circumstantial evidence that the elliptical
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Figure 4.1.2: Individual elliptical combs

honeycomb is based on the golden ratio, φ, 1+
√
5

2
≈ 1.6180339. Comb measurement

were gathered from a top bar hive in Milan, Tennessee. At the beginning of comb

construction the top bar hive plays the role of a foundationless frame mimicking a

wild comb. Digital images were taken of each comb. Software was then used to man-

ually fit an ellipse to each comb from which we extracted the ratio of the length of

the major axis to the length of the minor axis. Seven combs were found displaying an

elliptical shape and five samples were drawn from each comb. The results are given

in Table 4.1.

The data was found to have a mean of 1.412044 with a standard deviation of

0.278535.
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Comb1 Comb 2 Comb 3 Comb 4
SMP Ratio SMP Ratio SMP Ratio SMP Ratio

1 1.386100386 1 1.207594937 1 1.134433962 1 1.057603687
2 1.456349206 2 1.207594937 2 1.157107232 2 1.24929972
3 1.451361868 3 1.208121827 3 1.116113744 3 1.13559322
4 1.36437247 4 1.050239234 4 1.110849057 4 1.178484108
5 1.453488372 5 1.194835681 5 1.229885057 5 1.156097561

Comb 5 Comb 6 Comb 7
SMP Ratio SMP Ratio SMP Ratio

1 1.355163728 1 1.856115108 1 1.815789474
2 1.37913486 2 1.962962963 2 1.694736842
3 1.359693878 3 1.904411765 3 1.988235294
4 1.394402036 4 1.714285714 4 1.6
5 1.364102564 5 1.776978417 5 1.75

Table 4.1: Ratios of major axis to minor axis for combs sampled

4.2 Elliptical Fits

Figure 4.2.1 gives a graph of the model from equations (1.1.1) - (1.1.5) with initial

condition (3.1.3) at time t = 0.2. To emphasize the elliptical nature of the output

we extract cross sections in both directions of the XY plane. The resulting graphs

are given in Figures 4.2.1 and 4.2.2. The elliptical nature of the wax concentration

is most evident with cross sections taken at y ≈ 0 and y ≈ 1.25. We used a least

squares minimization to fit an ellipse to numerical data [10]. Notice in Figure 4.2.2

the difference between the exact point located on the graph of wax concentration and

the point used for fitting the ellipse. For the cross section at y ≈ 0 the discrepancies

are minimal. We see a very good elliptical fit. For the cross section at y ≈ 1.25,

corresponding to the second honey comb, the fit is not as good.
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Figure 4.2.1: Wax concentration and cross section at x ≈ 0

Figure 4.2.2: Cross sections at y ≈ 0 and y ≈ 1.25

4.3 Conclusions

In Chapter 3, we saw that for initial conditions (3.1.3) and (3.1.4) the parameter of D

had the strongest overall effect on the model. In this section we examine the outputs

of the model for varying D values at time t = 0.2 and t = 0.4. Figure 4.3.1 compares

two different D values for initial condition (3.1.3). It is clear that the D value of 50

better captures the tendency of bees to mimic each other so that the vast majority

will concentrate in one direction, in this case, parallel to the XZ plane. Also we get

an output of wax concentration that resembles elliptical combs. From Figure 4.3.2

we see that when we increase the time to t = 0.4 the average density of bees that are
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working decreases and the parallelism in the concentration of wax becomes evident.

In Figure 4.3.3 we increase the D value to 75 and compare the outputs for initial

condition (3.1.3) and (3.1.4) at time t = 0.4. We see that at this value of D the

model for the former initial condition begins to break down because the side combs

become taller than the middle comb. This is not consistent with what we know of hive

construction. We conclude in this case that the latter initial condition best captures

the nuances of honeycomb construction.
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Figure 4.3.1: Model at t=0.2: D=10 and D=50; initial condition (3.1.3)



4.3. Conclusions 39

Figure 4.3.2: Model at t=0.4: D=10 and D=50; initial condition (3.1.3)
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Figure 4.3.3: Model at t=0.4 with D=75; initial condition (3.1.3) and (3.1.4)
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