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ABSTRACT 

An up-to-date and detailed vegetation map provides critical information for habitat 

management. In addition, a habitat model is necessary for Park’s Fire Management, for 

classification of fuel types, and for delineation of fire management units. Several attempts to map 

the vegetation at the Mammoth Cave National Park were conducted in 1934, 1975, 1997 and 

2011. This essential goal of this study was to produce a new vegetation habitat model and update 

the vegetation map for the Park. Landsat-8 Operational Land Imager (OLI) imagery, LiDAR and 

bedrock dataset were used for habitat model configuration and vegetation mapping at Mammoth 

Cave National Park.  

Vegetation habitat types were determined by a combination of slope, aspect and bedrock. 

The habitat model indicated that Acid and Calcareous were the two dominant habitats within the 

park, accounting for 46.24% and 49.74% of the total park area respectively. Among the ten 

habitat types, Acid Mesic and Calcareous Sub-Mesic occupied the largest areas, which accounted 

for 29.26% and 21.03% respectively. The habitat was observed and described at 29 ground 

reference sites due to limited accessibility. The habitat types of 22 sites (76%) predicted by the 

model were consistent with field observations. The discrepancy between model result and field 

observation at three sites was likely due to previous human disturbance. And the model needs 

further improvement to accurately predict Acid Xeric habitat locations. 

Principal Component Analysis (PCA), enhanced vegetation index (EVI), and 

unsupervised classification, were applied to map the vegetation types. Five classes were mapped: 

barren land/ man-made structure, evergreen, deciduous, mixed forests and water. In the resultant 

map, deciduous trees accounted for the largest area in the park and most of the evergreen and 
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mixed trees were found in the southern part of the park.  The classification results were evaluated 

by 398 deciduous, 76 evergreen and 65 mixed field plots data. The overall accuracy of PCA 

technique and EVI Index was 85%, 7% higher than using PCA technique alone and 13% higher 

than NLCD 2011.  

The influence of historic disturbance which occurred before the establishment of the Park 

can still be seen today. Approximately 70% of the evergreen forests, dominated by eastern red 

cedar (Juniperus virginiana) are found in previously cropland and pasture fields. They are the 

first successional forest in the area. While 40% of coniferous trees are currently in Xeric or Sub-

Xeric habitat types with favorable conditions to support coniferous species, the remaining 60% 

will likely to be replaced by deciduous trees in the future.  
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CHAPTER ONE 

          DIMENSIONS OF VEGETATION HABITAT MODELING AND VEGETATION 

MAPPING 

 

1.0 INTRODUCTION 

 

Vegetation has considerable impacts on almost all land surface energy exchange 

processes, acting as an interface between land and atmosphere. It affects local and regional 

climate (Arora, 2002; Douville et al., 2000) and hydrologic balance of the land surface (Eugster 

et al., 2000). The dynamics of vegetation are of primary importance in global terrestrial 

ecosystem change (Suzuki et al., 2007 and Kelly et al., 2011). Vegetation not only forms 

essential habitats for plant and animal species but is also a prerequisite for ecosystem function. 

Vegetation provides many ecosystem services, principally through the protection of the land 

surface, the amelioration or modification of the local climate, the maintenance of critical 

ecosystem processes, and the conservation of biodiversity (Hölzel et al., 2012). Vegetation types 

represent different stages in vegetation restoration and succession and are closely related to soil 

properties, water runoff, soil erosion, as well as ecological stability (Jiao et al., 2008; Nagase and 

Dunnett, 2012; Qiu et al., 2010; Wang et al., 2011). Therefore, it is important to accurately 

distinguish vegetation types in ecological studies.   

Aspect and slope are alternatives for the spatial and temporal distribution of factors such 

as solar radiation, moisture and temperature that affect species composition and productivity 

(Stage and Salas, 2007). Differences in insolation period and intensity change with aspect, 

thereby forming a range of microclimates in multifaceted landscapes (Holland and Steyn, 1975).  

In general, aspect can have important influences on climate as well as the distribution of 
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vegetation types. In the northern hemisphere, the north side of slopes often have more shaded 

area than the south side, which receives less solar radiation. South-facing slopes tend to be more 

xeric (dry) due to high levels of evapotranspiration than a north-facing slope. For example, 

Pinder et al. (1997) have found that shrub communities were more abundant on south-facing 

slopes in Larsen Volcanic National Park in northern California. Also, Desta et al. (2004) found 

that deciduous forest on the north and east aspects were 27–50% more productive than the west 

and southwest aspects in an Appalachian watershed. This suggests that variations in aspect may 

have a great influence on the floristic and life-form composition of the vegetation (Armesto and 

Martinez, 1978). The steepness of a slope can also affect the growth of plants because it affects 

the amount of solar radiation received. In addition, the gradient of slope influences the 

availability of water to the vegetation. The steeper the slope, the more likely that rain will run off 

rather than infiltrate. Therefore, steep slope tends to hold less water and the soil will be more 

xeric. Airborne Light Detection and Ranging (LiDAR) offers detailed and precise elevation 

measurements that can be used to calculate aspect and slope measurements of much higher 

resolution and accuracy than traditional measurements based on topographic maps. 

Traditionally, vegetation maps were completed by using topographic maps, panchromatic 

aerial photography and field sampling. These methods, however, are ineffective to acquire 

vegetation coverage for a large area because they are time-consuming and often too costly. 

Remote sensing techniques provide a more practical, rapid and economic means to study 

vegetation habitats, especially over large areas. Landsat data provide a wide area coverage and 

medium spatial resolution to monitor vegetation changes. The frequent revisit makes it possible 

for the satellites to collect data for the study of landscape dynamics and monitoring of forest 

habitats in time and space. 
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1.1 Purpose of the study 

There have been several attempts to map the vegetation and habitats at the Mammoth 

Cave National Park over the last decades with limited success due to difficulty of access to some 

parts of the park and lack of high temporal and spatial resolution remotely sensed data. In 2010, 

the Park acquired high resolution LiDAR data for detailed mapping. The Park is now in the 

process of updating their Fire Management Plan that calls for an updated habitat map to facilitate 

the designation of fuel types. The specific objectives of this research are: (1) to develop a 

predictive habitat model based on a limited number of physical attributes (bedrock, slope, and 

aspect), (2) to produce an up-to-date vegetation map, (3) to evaluate the accuracy of the habitat 

model and vegetation map, and (4) to analyze the distribution of habitat and vegetation with 

reference to each other and the land use history of the Park. Data collected by Landsat-8 

Operational Land Imager (OLI) is used to categorize vegetation types according to their 

reflectance characteristics. Digital Elevation Model (DEM) derived from LiDAR data is used to 

calculate and categorize slope and aspect throughout the Park. The resultant vegetation and 

habitat maps are valuable for fire management and wildlife habitat and biodiversity conservation 

analysis.  

 

1.2 Organization of the research 

The thesis is organized into six chapters. The first chapter introduces the theme of 

research, including purpose of the study. Chapter Two contains literature review pertaining to 

this research. The study area of this research, including its physiography, climate, and geology, 

are discussed in Chapter Three. The following chapter provides a detailed description of the 
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methodology including data sources and types, habitat modeling, vegetation classification, and 

accuracy assessment. The results are presented in Chapter Five. Finally, Chapter Six presents the 

conclusion of the study and provides some recommendations.  
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CHAPTER TWO 

VEGETATION HABITAT MODELING AND VEGETATION MAPPING – AN 

OVERVIEW 

 

2.0 Introduction 

It is an important task to classify and map vegetation for managing natural resources as 

vegetation provides a base for all living beings and plays an essential role in affecting global 

climate change, such as influencing terrestrial CO2 (Xiao et al., 2004). Vegetation mapping also 

provides valuable information for understanding the natural and man-made environments 

through quantifying vegetation cover from local to global scales at a given time period or over a 

continuous period (Xie et al., 2008). It is critical to obtain current states of vegetation cover in 

order to initiate vegetation protection and restoration programs (Egbert et al., 2002; He et al., 

2005).  

Habitat type mapping is not only applicable in forestry purposes but also valuable in 

conservation (Räsänen et al., 2014). In forestry, habitat type maps and other thematic maps are 

used for strategic analysis in forest management planning (Tomppo et al., 2008). In conservation 

perspective, habitat type maps can be used in mapping biodiversity patterns (e.g. Kerr and 

Ostrovsky, 2003; Turner et al., 2003). Habitat types can also provide information for 

classification of fuel types. Fuel characterization is key to wildfire prevention as forest fuel is 

one of the primary factors affecting wildfire risk and behavior (Marino et al., 2016).  

 

2.1 Vegetation habitat and vegetation type mapping using remote sensing and LiDAR 

Traditional methods for vegetation analysis, such as field surveys, map interpretation and 

ancillary data analysis are often ineffective because they are time consuming, expensive, and 
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often provide date lagged information (Xie et al., 2008). Remote sensing data brings another 

perspective to vegetation studies, because it provides possibilities of detecting the patterns at 

different spatial scales, which may not be feasible through field observations. Therefore, this 

technique helps in the characterization of ecosystems at various spatial extents. Apart from this, 

remote sensing data archives have great potential for facilitating systematic temporal analysis at 

various scales from recent past to several decades back (Xie et al., 2008). Lefsky et al. (2002) 

stated that analogue aerial photography has been the oldest, most frequently used and best 

understood form of remote sensing. High-resolution historic aerial photographs dating back to 

1930s are effective in the mapping of small ecosystems, fine-scale landscape features and 

successional pathways in some cases (Green and Hartley, 2000; Morgan et al., 2010). Automated 

digital image analysis techniques provide a time-saving solution and eliminate the influence of 

the interpreter’s subjectivity in vegetation delineation. The optimal approach depends primarily 

on the definition of the output products (e.g., the type of the maps) and is influenced by spatial 

resolution and inter-pixel variance (Wulder et al., 2004).  

The application of remote sensing techniques in forest mapping is possible because of the 

high reflectance values from forested areas in the near-infrared, moderate reflectance in the 

middle-infrared and low reflectance in the red spectral regions compared with non-forested areas 

(Xiao and McPherson, 2005). Vegetation index (VI), defined as the arithmetic combination of 

the near-infrared and red bands related to the spectral characteristics of vegetation, has been 

widely used for phenologic monitoring and biophysical derivation of radiometric and structural 

vegetation parameters (Huete and Justice, 1999). Normalized Difference Vegetation Index 

(NDVI) is the most commonly used vegetation index, which can cancel out a large proportion of 

the noise caused by changing sun angles, topography, clouds, or shadow, and atmosphere (Huete 
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and Justice, 1999). Enhanced Vegetation Index (EVI) has been considered as modified NDVI 

with improved biomass regions and improved vegetation monitoring capability (Huete and 

Justice, 1999). Compared to NDVI, EVI is more responsive to canopy variation, canopy type and 

plant physiognomy.  

To extract land cover information from remotely sensed imagery, image classification 

methods are usually applied. Cluster analysis is commonly used for unsupervised classification 

(Choi et al., 2004; Mukherjee and Lal 2014; Abdi and Williams 2010; Lu et al., 2014). The goal 

of cluster analysis is to assign observations to groups (“clusters”) where observations within each 

group are similar to one another with respect to variables or attributes of interest, and the groups 

themselves stand apart from one another (Beauchaine and Beauchaine, 2002). Although these 

clusters are not always equivalent to actual classes of land cover, this method can be used 

without having prior knowledge of the ground cover in the study site (Nie et al.2001). 

Traditional unsupervised classification algorithms, such as k-means (Duda et al. 2001) and the 

Iterative Self-organizing Data Analysis Techniques Algorithm (ISODATA) (Ball and Hall 

1965), use iterative calculations to find an optimum set of decision boundaries for clustering. The 

ISODATA is a more sophisticated version of k-means, which allows classes to be split and 

merged (Zhong et al. 2011).  

Principal Component Analysis (PCA) is a mathematical procedure that uses orthogonal 

transformation to convert a set of observations of possibly correlated variables into a set of 

values of linearly uncorrelated variables called principal components (Abdi and Williams, 2010; 

Jolliffe, 2005). PCA transforms a number of detected variables into a smaller number of 

principal components (PCs) (Guo et al. 2015). This transformation is defined in such a way that 

the first PC has the largest possible variance, and each succeeding component in turn has the 
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highest variance possible under the constraint that it be orthogonal to (i.e., uncorrelated with) the 

preceding components (Mari et al. 2012). PCA is known to be effective to reduce the 

dimensionality in Landsat imagery (Kwarteng and Chavez, 1989) because several Landsat bands 

are highly correlated. 

Light Detection and Ranging (LiDAR) systems uses artificial laser light to measure 

distances to the earth. LiDAR offers detailed and accurate elevation measurements that can 

provide high spatial resolution digital elevation models (DEMs), and slope and aspect (Gould et 

al., 2013). Small-footprint, discrete-return system have the ability to penetrate surface vegetation 

and yield multiple returns from canopy and underlying terrain (Gould et al., 2013). The dense 

collection of elevation data makes LiDAR an attractive data source for the production of high-

resolution digital elevation models (DEMs) used in many GIS application (Gould et al., 2013). 

Research has been conducted to explore the effect of DEM resolution on terrain representations, 

such as slope and aspect mapping (Chow and Hodgson. 2009). The study of Chang and Tsai 

(1991) showed that both the accuracy of slope and aspect decreased with coarser DEM 

resolution.  

2.2 Vegetation habitat and vegetation mapping in Mammoth Cave National Park 

The first vegetation field mapping of the Park was completed by Ivan Ellsworth (1934), 

and included 47,348 acres within the minimum proposed boundary. The resultant map contained 

seventeen categories of four major forest types plus two categories of cleared areas (Ellsworth 

1936). Much of these disturbed areas, now in the middle of succession, can still be recognized 

today. Though aerial photographs were available at the time, they were not used in Ellsworth 

study for vegetation mapping which was accomplished by field teams armed with topographic 
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maps. The next vegetation map was produced by Franklyn Hambly (1966) as part of the Park's 

Resource Management Plan. The map featured five forest cover types, and park biota were 

assigned to one or more of the cover types. No details of mapping methods were provided. The 

third vegetation map of the park was produced by Adolf Faller and Marion Jackson (1975). They 

used 1966 panchromatic aerial photography (1:20,000) to establish individual mapping units. 

Seven major vegetation types were established with 18 “subunits characteristic of successional 

types on particular landforms” (Faller and Jackson, 1975). It was a thorough study, but the map 

sections had boundary discrepancies, which prevented assembly into one coherent map. The 

fourth vegetation map of the park was prepared by Kemuel Badger (Badger et al., 1997), and 

employed a stratified random field sampling approach within a variety of habitat types. Eight 

community types were delineated with GIS-based modeling, but significant discrepancies 

between field data and community types on the map persisted (Olson et al. 2000). The latest 

vegetation map was produced in 2011 by Olson et al. (2013). They used 2008 Landfire map to 

designated 24 sub-categories and grouped them into four vegetation categories. Barrens and 

Prairie Plantation categories were added as superimposed polygons, and the same approach was 

taken for both fire and storm-linked forest canopy gaps (Olson et al., 2013). Accuracy 

assessment data points were selected randomly and the cumulative average accuracy for this map 

was 66%, which was below the acceptable 80%. Meanwhile, it was identified then that another 

vegetation mapping effort based on Landsat data would be necessary to compare to the mapping 

result of 1997 (Olson et al., 2013).  
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CHAPTER THREE 

STUDY AREA AND DATA AQUISISTION 

3.1 Location 

Mammoth Cave National Park (Figure 1) is located at latitude 37.2° north and longitude 

86.1° west in the south-central Kentucky. Mammoth Cave National Park has the world’s largest 

network of natural caves and underground passageways, which are characteristics of limestone 

formations. Established in 1941, Mammoth Cave National Park is also a World Heritage Site. 

The park and its underground network of more than 560 surveyed-km of passageways are home 

to a varied flora and fauna, including a number of endangered species.  The park's 52,830 acres 

(21,380 ha) are located primarily in Edmonson County, Kentucky, with small areas extending 

eastward into Hart County and Barren County. 

 

 

 

 

 

 

 

 

Fig.1: A) The geographic location of the Mammoth Cave National Park 

    B) The geographic features of Mammoth Cave National Park 
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3.2 Physiography 

Mammoth Cave National Park lies in the South-Central Kentucky karst, which is a 

crossroad of carbonate bedrock stretching north to Indiana, east to the Cumberland Plateau, south 

to Georgia and west to the Ozarks. The park is bisected east to west by the Green River, which 

defines the hydrologic base-level and divides the region into two distinct physiographic areas. 

North of the river is an alternating series of limestone and insoluble rocks are exposed with the 

main limestone strata accessible only near the river and in the bottom of a few deeply incised 

valleys (National Park Service, 2015). 

3.3 Climate 

Kentucky has a moderate climate, characterized by warm, yet moist conditions. Summers 

can average in the mid-90s (F) (32.22°C), while winters average in the low 40s (F) (9.44°C). 

Much of the park’s average annual 52 inches (132cm) of precipitation falls in the spring. Storms 

occur year-round, though most occur March-September. Year-round, the cave temperature in 

interior passages fluctuates from around 54º (F) (12.2°C) to 60º (F) (15.5°C). Winter 

temperatures, however, can be below freezing at the cave entrances.  

3.4 Geology 

The Mammoth Cave National Park is part of South-Central Kentucky Karst, which is 

characterized by subterranean drainage to springs on major rivers. From the southeast to the 

northwest portion of the landscape, there is a gradient of decreasing maturity in karst 

development, which corresponds to the regional dip of the bedrock.  

For a given climate, bedrock largely determines soil types, and whether surface or 

subsurface (karst) drainage prevail. Due to the tendency for subsurface drainage to develop in 
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calcareous bedrock such as limestone, these sites will be more xeric than areas underlain by 

sandstone or shale. The magnitude of this general difference appears to be minimized on the 

steepest slopes due to rapid surface drainage. 

3.5 Data Sources 

To effectively distinguish evergreen and deciduous trees, one leaf-off and one leaf-on  

Landsat-8 OLI image were obtained from U.S Geological Survey (USGS) Earth Explorer 

website. The images were acquired on January 2nd and June 10th, 2016. Landsat 8 images consist 

of nine spectral bands and all seven reflective bands were used. The spatial resolution of the 

images is 30 meters. Figure 2 shows January 2nd imagery in Band 6, 5, 4 as RGB. Figure 3 shows 

June 10th imagery in Band 6, 5, 4 as RGB. 

Airborne Light Detection and Ranging (LiDAR) dataset was provided by the Mammoth 

Cave National Park. The LiDAR dataset was acquired between Oct 13th and 17th, 2010, which 

was used to produce a digital elevation model (DEM) of 1 m pixel resolution (Figure 4).   

The Park provided the bedrock dataset. The bedrock categories are Alluvium, Calcareous, 

Calcareous caprock, and sandstone/shale. “Alluvium” referrs to river lain sediment. 

“Calcareous” refers to carbonate bedrock, which results in more alkaline soil. Non-carbonate 

sandstone and shale bedrock conditions would result in more acidic soil. Figure 5 shows the 

cross section of the cave and its relationship to the surroundings and geology. Massive cross-

bedded sandstone and shale beds cross on top of older limestone and as erosion continues, these 

sandstone and shale form protective caprock for the cave system in the Mammoth Cave region. 

Subsurface drainage on limestone tends to be more xeric than on sandstone as most of the water 

flows into the sinkhole on limestone while more water is retained in soil on sandstone. 
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Fig.2: False color composite of Landsat-8 OLI image of Mammoth National Park, January 2nd,   

2016 (Band 6, 5, 4 as RGB) 
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Fig.3: False color composite of Landsat-8 OLI image of Mammoth National Park, June 10th, 

2016 (Band 6, 5, 4 as RGB) 
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Fig.4: Derived Digital Elevation Model of LiDAR Dataset 
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Fig.5. Cross section through the Mammoth Cave area showing the relationship of the cave to the 

surrounding land surface and geology (Crawford et al., 2013). 

 

In addition, the land use map from 1936 (before the official establishment of the Park) 

was obtained to provide historic human disturbance data. Natural color digital orthophotographs 

were acquired the same time of LiDAR data acquisition. These 1 m spatial resolution 

photographs were used as reference during the class labeling of the unsupervised classification 

process. The Park also provides field plots data for accuracy assessment of the vegetation 

mapping results. 
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CHAPTER FOUR 

METHODOLOGY 

4.1 Vegetation Habitat Model 

4.1.1 Model Configuration 

Discussions with the Park staff and field trips to the Park provided the knowledge and 

scheme for the habitat model based on three physical attributes: bedrock type, slope (Figure 6), 

and aspect (Figure 7). Bedrock (Figure 8) is aggregated into four broad types: limestone (main 

cave), sandstone/shale, limestone caprock (exposed thin limestone beds overlaying 

sandstone/shale) and alluvium (flood plain deposits). Habitat developed over limestone bedrock 

is drier (more xeric) than that of same topographic condition in sandstone areas because water 

infiltrates limestone better while poorly drained soil over sandstone is more moist. The thin layer 

of limestone caprock with insoluble sandstone underneath creates more moist conditions. Slope 

is classified into three categories: flat (below 5), moderate (between 5 and 23), and steep (23 

and above). Steeper slopes create more xeric conditions due to faster runoff thus less infiltration. 

The 360 degrees of aspect are grouped into 16 wedges of 22.5 degrees each. South and 

Southwest facing slopes create more xeric condition due to longer hours of sun exposure. For 

different degrees of slopes, the corresponding aspect ranges determined how xeric or mesic the 

habitat type is. Supra-mesic conditions were on the moist end of the mesic, but not saturated. 

Mesic conditions were moderately moist. Sub-mesic conditions were less moist compared to 

mesic. Sub-xeric conditions were intermediate between xeric and mesic. After several rounds of 

try and error working with Park Ecologist, Rick Olson, the final scheme for habitat prediction 

based on these three physical attribute is decided for the full array of habitat types (Table 1).  
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Fig.6: Slope Reclassification of Mammoth Cave National Park 
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Fig.7: Aspect Reclassification Result 
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Fig.8: Bedrock Reclassification Result   
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Figures 9 and 10 show how the combination of moderate and steep slopes with limestone 

or sandstone bedrock are assigned to habitat classes based on aspect.  

Table 1. Habitat physical attribute classification 

1. Calcareous Xeric 

a. Southeast to West 

 

Compass bearings 

180-247 

 

2. Calcareous Sub-Xeric 

a. Flat 

b. Moderate Southeast 

c. Moderate Southwest 

d. Steep Southeast  

e. Steep Southwest 

 

− 

112-180 

247-292 

90-180 

247-315 

3. Calcareous Mesic 

a. Moderate Northwest to Southeast 

b. Steep Northeast  

 

292-112 

045-090 

4. Calcareous Supra-Mesic 

a. Steep Northwest to Northeast 

 

315-045 

5. Acid Xeric 

a. Steep Southeast to Southwest 

 

157-247 

6. Acid Sub-Xeric 

a. Moderate Southeast to West 

b. Steep Southeast 

c. Steep Southwest  

 

135-270 

135-157 

247-270 

7. Acid Mesic 

a. Flat (+ Hydro-Mesic vernal Ponds) 

b. Moderate West to Northwest 

c. Moderate Northeast to Southeast 

d. Steep West to Northwest 

e. Steep Northeast to Southeast 

 

− 

270-315 

045-135 

270-315 

045-135 

8. Acid Supra-Mesic  

a. Moderate Northwest to Northeast 

b. Steep Northwest to Northeast 

 

337-022 

315-045 

9. Floodplain Alluvium − 
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Calcareous Habitats on moderate slopes 

2. Calcareous Sub-Xeric 

3. Calcareous Mesic 

4. Calcareous Supra-Mesic 

1. Calcareous Xeric 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                         

 

 

 

 

 

 

 

 

 

 

Fig.9: Calcareous habitat model with regard to slope and aspect. 

 

 

Calcareous Habitats on steep slopes 
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6. Acid Sub-Xeric 

7. Acid Mesic 

8. Acid Supra-Mesic 

5. Acid Xeric 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.10: Acidic habitat model with regard to slope and aspect 

 

 

Acidic Habitats on moderate slopes 

Acidic Habitats on steep slopes 
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4.1.2 Model application 

Aspect and Slope were calculated from LiDAR-derived DEM data and reclassified. The 

bedrock dataset was simplified into four broad categories. To make the data processing 

manageable, it was determined that 5 m by 5 m pixels be an appropriate resolution. GIS overlay 

function was applied to determine habitat types by integrating aspect, slope and bedrock. Given 

the bedrock types, certain slope combined with certain aspect determines the habitat type (Table 

1). For example, habitat located over limestone bedrock on moderate slope with an aspect of 

135° (southeast facing) is determined to be Calcareous Sub-Xeric type.  

4.1.3 Accuracy assessment of the vegetation habitat model 

A total of 600 random points were generated using stratified random sampling strategy. 

Among all 600 points, around 20 points for each category that have relatively easy access to roads 

were selected as possible candidates for field verification. The field reference data were collected 

between April 28th and 30th, 2017. We were able to visit a total of 30 points during the three days 

with the Park Ecologists, Mr. Olson. The aspect and slope were measured onsite. Bedrock, 

vegetation species, and habitat type were determined and recorded as well (Appendix I).  

 

4.2 Vegetation Type Mapping 

 

4.2.1 Image Preprocessing 

Radiation from Earth’s surface undergoes significant interaction with the atmosphere 

before it reaches the satellite sensor (Hadjimitsis et al., 2010). The atmosphere can always 

influence the radiation from the ground to the sensor. Therefore, it is essential to consider the 

effects caused by the atmosphere by applying an efficient method during pre-processing of 
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digital data. Top of Atmospheric (TOA) reflectance and sun angle correction were executed for 

the Landsat 8 images (USGS, 2016).  

PCA is known to be effective to reduce the dimensionality in Landsat imagery (Kwarteng 

and Chavez, 1989). It transforms the original image into a set of uncorrelated variables that 

represents most of the information present in the image. The two Landsat-8 OLI images from 

January and June were combined into one dataset, and PCA was performed on the combined 

two-date dataset. The first four components that accounted for 99% of the variance were selected 

for image classification later.  

4.2.2 Enhanced Vegetation Index Calculation 

Vegetation indices have been derived from Landsat to capture characteristics of 

vegetation. The Enhanced Vegetation Index (EVI) was developed to optimize the vegetation 

signal with improved sensitivity in high biomass regions and improved vegetation monitoring 

through a de-coupling of the canopy background signal and a reduction in aerosol influences 

(Huete et al. 2002):                  

 𝐸𝑉𝐼 = 𝐺 ∗ ((ρNIR −  ρred) ) ⁄ (ρNIR + C1 ∗ ρred − C2 ∗ ρblue + L)           (1)  

where ρNIR, ρred, and ρblue are the atmospherically corrected reflectance for the NIR, 

red, and blue spectral bands; L is the canopy background adjustment factor that addresses 

nonlinear, differential NIR and red radiant transfer through a canopy; and C1 and C2 are the 

coefficients of the aerosol resistance term, which uses the blue band to correct for aerosol 

influences in the red band. In the MODIS EVI algorithm, the coefficients of L = 1, C1 = 6, C2 = 

7.5, and G = 2.5 are adopted (Huete et al.2002; Huete et al. 1997, which are also applicable for 

Landsat-8 OLI products (USGS, 2017; Masek et al. 2006). For this research, EVI was calculated 

for the January and June images respectively for integration into the classification process. 
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4.2.3 Image Classification 

Unsupervised classification is an effective method of partitioning remote sensing image 

data in multispectral feature space and extracting land cover information (Loveland et al., 1999; 

Huang, 2002). It requires minimum knowledge of the study area, which mainly uses some 

clustering algorithm to classify image data (Richards, 1993). In this research, the ISODATA 

algorithm was applied twice to produce two vegetation maps of the Park based on two different 

imagery inputs: 1) the imagery composed of the four principal components, and 2) the imagery 

composed the four principal components and the two EVI images. The two resultant maps were 

then compared for their accuracy.  

For classification of each image, 250 initial clusters were generated by the ISODATA 

algorithm. They were then examined, labeled, and aggregated into five classes: Barren Land/ 

Man-made Structure, Evergreen, Deciduous, Mixed forest, and Water. The orthophotographs 

were used as reference for the labeling of deciduous, evergreen and mixed forest. Applying the 

same definition as the National Land Cover Dataset (NLCD, Homer et al., 2012), if evergreen or 

deciduous trees occupied 25-75% in one Landsat pixel based on the reference orthophotos, the 

pixel would be “mixed”.  

4.2.4 Accuracy assessment of classification results 

Accuracy assessment quantitatively determines how effectively pixels were grouped into 

their corresponding classes in the investigated area. Each classification entails assessment of the 

consistency and reliability of the results. The accuracy assessment includes three steps: using 

field plot data as testing samples, preparing a confusion matrix resulting from field plots and 

classified clusters, and calculating the accuracy measurement. 
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The field plots data contains 750 deciduous points, 47 evergreen points and, 65 mixed 

points. Instead of applying all the deciduous points for accuracy assessment, I randomly selected 

398 out of 750 points were randomly selected for accuracy assessment (the remaining 352 points 

were used in the cluster labeling process during classification). All 47 evergreen plots and 65 

mixed plots were applied for accuracy assessment. 

The error matrix is the most common method of reporting classification assessment. An 

accuracy assessment report depicts the user’s accuracy and producer’s accuracy. The producer’s 

accuracy indicates how well a certain study area can be classified (omission error). In contrast, 

the user’s accuracy is a measure of commission error.  

Accuracy assessment report also includes the Kappa statistics as well (Equation 2). The 

Kappa Coefficient of Agreement measures the performance of the classification compares to the 

possibility to assign pixel randomly into classes. The results of Kappa closer to 1 means that the 

classification is considered much better than chance agreement, and closer to zero means that the 

classification is no better than chance (Congalton, 1991). 

 

                                                                      (Equation: 2) 

 

Where: r = the number of the row in the matrix, 

Xii = sum of diagonal, 

Xi+ = the total of observation in row I, 

X+i = the total observations in column I, respectively, 

N = the total number of the samples  
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CHAPTER FIVE 

RESULTS AND DISCUSSION 

 

5.1 Results of vegetation habitat modeling 

The LiDAR-Derived DEM shows that the highest elevation is 287 m and the lowest 107 

m (Figure 4). Lower elevation values are near streams and the Green River while higher 

elevation areas are in northwest and southeast portions of the Park.  

Figures 6 and 7 show the resultant map of slope and aspect reclassification. Most areas at 

lower elevation (except water areas) had moderate to steep slopes, indicating that gullies or 

depressions existed in those regions. Therefore, these shaded regions tended to be more mesic 

(moisture-laden) than sun-exposed areas. In contrast, areas at higher elevation with steep slopes 

tend to divert water away fast, which caused more xeric (dry) conditions. The amount of solar 

radiation on the landscape changes during a day and seasonally, according to the aspect that the 

slope is facing. Typically, south-facing slopes are exposed to much more sunlight compared to 

north-facing slopes in the northern hemisphere. Thus, south-facing areas would be more xeric 

while north-facing slopes regions more mesic.  

The bedrock reclassification map (Figure 8) shows the distribution of Calcareous, Acid 

(Sandstone/Shale) and Calcareous Caprock bedrock types. Lower elevation areas south of the 

Green River are mostly main cave Calcareous bedrock. Acidic bedrock, on top of the main cave 

limestone, spreads throughout the park. Limestone caprock is found on higher elevation 

overlaying insoluble sandstone. 

Figure 11 is the result of habitat modeling considering bedrock, aspect, and slope. The 

two major habitat types were largely determined by bedrock (Table 2). The variation within the 
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two main habitat types formed under different slope and aspect conditions. Most Calcareous 

Xeric and Calcareous Sub-Xeric habitat areas are in the southeastern part while Calcareous Sub-

Mesic habitat spreads across the Park. The Acid Xeric and Acid Sub-Xeric habitat mostly were 

in the northwestern part while moderate elevation regions in the southeast formed Acid Mesic 

habitat. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.11: Habitat modeling result based on geology, slope, and aspect 
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Calcareous Xeric and Calcareous Supra-Mesic habitats are displayed in Figures 12 and 

13. The two habitats occur on relatively steep slopes, with Xeric habitat facing southeast and 

Supra-Mesic habitat facing north. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.12. Calcareous Xeric Habitat                             Fig.13. Calcareous Supra-Mesic Habitat 

 

Acid Sub-Xeric (Figure 14), Calcareous Sub-Xeric (Figure 15), Acid Mesic (Figure 16) habitats 

are displayed as examples to compare the differences between each other. Mesic habitats are 

dominated by deciduous trees with abundant understory growth while the density of vegetation 

in Sub-Xeric habitats is less dense with more evergreen trees.  
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Fig.14. Acid Sub-Xeric Habitat                                Fig.15. Calcareous Sub-Xeric Habitat 

 

 

 

 

 

 

 

 

 

Fig.16. Acid Mesic Habitat  
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Table 2. Habitat type area in hectares and the corresponding percentages by the Park in 2017 

 

Acid and Calcareous are the two dominant habitats within the park, which accounted for 

46.24% and 49.74% of the total park area respectively (Table 2). Acid Mesic had the largest 

areas of a single category followed by Calcareous Sub-Mesic, which accounted for 29.26% and 

21.03% respectively. Calcareous Supra-Mesic and Acid Xeric each accounted for less than 1%. 

Calcareous Mesic, Calcareous Sub-Xeric and Acid Sub-Xeric habitat types occupy about the 

same area in the Park (11-12%). The remaining three habitat types are less than 5% each. 

Habitat types in Table 2 follow the classification system of the Kentucky State Nature 

Preserves Commission (Evan 1991). Table 3 shows the typical species of each habitat type in 

deciduous, mixed and coniferous forests. Various types of oak trees dominant the deciduous 

forests in more xeric conditions, such as Chestnut oak, post oak, Chinkapin oak, and blackjack 

oak. White oak, black oak and pignut hickory are commonly found in mesic upland deciduous 

forest. In the mesic valleys and floodplain, sugar maple, beech, box elder, and sycamore trees are 

more common. In mixed forests, the dominant deciduous species are red maple, tulip popular, 

dogwood, and sweetgum. Eastern red cedar and Virginia pine are the two major coniferous 

species found throughout the park.  

Habitat Type Acreage Percentage of the Park (%) 

Calcareous Supra-Mesic 440.41 0.87 

Calcareous Mesic 5,667.45 11.18 

Calcareous Sub-Mesic 10,662.63 21.03 

Calcareous Sub-Xeric 5,995.60 11.83 

Calcareous Xeric 2,448.75 4.83 

Alluvium 2,036.59 4.02 

Acid Supra-Mesic 2,180.86 4.30 

Acid Mesic 14,832.60 29.26 

Acid Sub-Xeric 5,962.35 11.76 

Acid Xeric 466.28 0.92 
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Table 3. Typical vegetation species for each habitat of the Park (Olson and Noble, 2005). 

Vegetation Habitat type Typical Species Fire frequency 

 

1. Sub-Xeric deciduous 

forest/ savanna 

Acid Sub-Xeric 

Calcareous Sub-Xeric 

Chestnut oak, post oak 

Chinkapin oak, blackjack 

oak 

 

Frequent  

 

2. Mesic upland 

deciduous 

Acid Mesic 

Calcareous Sub-Xeric 

(thin beds) 

White oak 

Pignut hickory, black oak  

 

Frequent  

 

3. Mesic hollow/ 

floodplain deciduous 

forest 

Calcareous Mesic 

Acid Mesic 

Alluvium 

Sugar maple 

Beech 

Box elder, sycamore 

 

Rare  

 

4/5. Mixed deciduous/ 

coniferous 

Mixed coniferous/ 

deciduous forest 

Acid Mesic 

 

Calcareous Sub-Xeric, 

Alluvium 

Red maple, tulip popular 

Dogwood, sweetgum,  

cedar/pine 

 

Infrequent  

 

6. Coniferous forest  

Acid Xeric to Mesic 

Calcareous Xeric to 

Sub-Xeric 

Virginia pine 

 

Eastern red cedar 

 

Infrequent  

 

7. Prairie/ open area 
Calcareous Sub-Xeric 

Acid Mesic 

Native Grasses and Forbs 

Mown Grass 

 

 

Olson and Noble (2005) noted that fire was rare in mesic hollow/floodplain deciduous 

and infrequent in coniferous forest and mixed forests, while fire was frequent in all other types of 

deciduous forest (Table 3). Based on that information, habitat types in regular typeface in Table 

2 are capable of carrying fire during the spring and fall fire seasons (Olson and Noble. 2005). 

These habitat types account for approximately four-fifths of the Park. Habitat types in bold in 

Table 2, which account for approximately one-fifth of the park, do not support fire independent 

or fire-tolerant plant communities (Olson and Noble, 2005). Figure 17 shows the location of fire-

sensitive and fire-tolerant habitat types. In general, the fire-sensitive habitat types are surrounded 

by fire-tolerant habitat types, a good sign for management.  
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Fig.17. The distribution of fire-sensitive and fire-tolerant habitat types 

5.2 Accuracy of habitat modeling 

Figure 18 shows the location of the 30 sites we were able to visit in the field, to evaluate 

the accuracy of the habitat model. One site was discarded due to its location at a road cut. For the 

remaining 29 sites, the habitat types as predicted by the model for 22 sites were consistent with 
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field observations (76%). The model results for five out of the nine acidic and calcareous habitat 

categories matched the field observations completely. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.18. The distribution of sites visited for ground truthing  
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Table 4 shows the seven (7) sites where inconsistency between model result and ground truth 

was identified and the reasons for inconsistency. At three of the locations, previous human 

disturbance was the most likely reason for the inconsistency (sites ID #437, #434 and #122). The 

model was clearly problematic for Acid Xeric habitat. Four sites where the model predicted Acid 

Xeric, all turned out to be Sub-Xeric. Acidic Xeric habitat accounted for a very small proportion 

of the Park. It would be found on top of steep sandstone cliffs usually marked by a pine tree 

stand. These locations have proven difficult to identify due to their small size and the 5 m 

resolution of the model. 

Table 4. Habitat Modeling and Ground Truth comparison of 7 observed sites 

Site Name 
Habitat modeling  

result 
Ground truth Reason 

ID#437 Acid Supra-Mesic 
Calcareous Sub-

Mesic or Acid Mesic 

It is an old crop field where habitat 

types are influenced by previous 

human disturbance. 

ID#521 

Acid Xeric 

 

Acid Sub-Xeric 

 

Acid Xeric habitats are at specific 

locations with steep sandstone cliff, 

with a pine stand on top. It is 

difficult to locate. 

ID#550 

ID#555 

ID#557 

ID#434 
Calcareous Sub-

Xeric 
Calcareous Mesic 

It is in a transition zone from 

Calcareous Mesic and Calcareous 

Sub-Xeric, with previous 

disturbance likely fire. 

ID#122 Calcareous Xeric 
Calcareous Sub-

Mesic to Sub-Xeric 

It is an old crop field. Previous 

human disturbance likely 

contributed to current site condition. 
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5.3 Results of vegetation type mapping 

The classification results include five classes: barren land/ man-made structure, evergreen 

(eastern red cedar, ferns), deciduous (sugar maple, pignut hickory, tulip popular), mixed forest, 

and water. Figure 19 displays the results of classification using principal components alone and 

Figure 20 shows the result of using both principal components and EVI images. Deciduous 

forest, which accounted for the largest area, was found throughout the Park. Most evergreen 

forest was located in the southern part of the park. Mixed forest was in close proximity to 

evergreen and it had the smallest amount of area. Comparing the two results, the inclusion of 

EVI index helped distinguish mixed and evergreen forest better. Some pixels of mixed forest 

were misclassified as evergreen forest in Figure 19; mixed forests are better defined in Figure 20. 

To put it in perspective, the classification results were compared to National Land Cover 

Database (NLCD) 2011 (Homer et al., 2012), the only other land cover map readily available. 

The same field plots data were used to evaluate the accuracy of all three land cover products. 

Tables 5-7 show the error matrices for the two classifications and NLCD. The overall 

accuracy for PCA technique and EVI index was 85%, which was relatively higher compared to 

the PCA technique (78%) and NLCD 2011 (72%). Among the different types of forest, 

deciduous was the most accurately mapped with between 87% and 97% in both producer’s and 

user’s accuracy in this study. Incorporating the EVI in classification boosted the accuracy of both 

evergreen and mixed forests. The accuracy for mixed forest was lower than any other class, 

which had the highest percent correct with the inclusion of EVI index. Using the PCA alone, the 

evergreen and deciduous forests also had lower accuracies (59% for the producer’s accuracy and 

43% for the user’s accuracy). 
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Fig.19: The classification result of PCA technique of Mammoth Cave National Park 

 

 

 



39 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.20: The classification result of PCA technique and EVI Index of Mammoth Cave National         

    Park 
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 Table 5. Error Matrix for the classification of PCA technique  

 Reference Data 

C
la

ss
if

ie
d

 D
a
ta

 

 Barren Land/ 

Man-made 

Structure 

Evergreen Deciduous Mixed Water Total 

Barren Land/ 

Man-made 

Structure 

  

1 

 

1 

   

2 

Evergreen  42 12 24  78 

Deciduous  25 368 29  422 

Mixed  8 14 12  34 

Water   2   2 

Total  76 397 65  538 

 

 

Table 6. Error Matrix for the classification of PCA technique and EVI Index 

 

 

Table 7. Error Matrix for the classification of National Land Cover Database 

 Reference Data 

C
la

ss
if

ie
d

 D
a
ta

 

 Barren Land/ 

Man-made 

Structure 

Evergreen Deciduous Mixed Water Total 

Barren Land/ 

Man-made 

Structure 

  

1 

 

1 

   

2 

Evergreen  48 7 17  72 

Deciduous  22 385 26  433 

Mixed  5 3 22  30 

Water   1   1 

Total  76 397 65  538 

 Reference Data 

C
la

ss
if

ie
d

 D
a
ta

 

 Woody 

Wetlands 

Evergreen Deciduous Mixed Water Total 

Woody Wetlands    

18 

   

18 

Evergreen  60 42 41  143 

Deciduous  15 320 15  350 

Mixed  1 13 9  23 

Water   4   4 

Total  76 397 65  538 
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Table 8. Accuracy report of the classification results for vegetation types 

 Accuracy of PCA 

technique 

Accuracy of PCA 

technique and EVI index 

Accuracy of NLCD 

2011 

Class Name Producer’s 

Accuracy 

User’s 

Accuracy 

Producer’s 

Accuracy 

User’s 

Accuracy 

Producer’s 

Accuracy 

User’s 

Accuracy 

Evergreen 55% 54% 63% 66% 79% 42% 

Deciduous 92% 87% 97% 89% 80% 91% 

Mixed 18% 35% 34% 73% 14% 39% 

Overall 

classification 

Accuracy 

 

78% 

 

85% 

 

72% 

Overall kappa 

statistics 

0.45 0.61 0.42 

 

 The comparison of NLCD between classified images using different techniques 

demonstrated that PCA technique and EVI index improved the overall classification accuracy to 

some extent. In addition, mixed forests’ low classification accuracy in NLCD also demonstrated 

the classification limitation for classifying mixed forests. The inclusion of EVI index improved 

the accuracy of mixed forest to some extent. 

5.4 The impact of historic disturbance on vegetation 

Since the evergreen, particularly eastern red cedar, the dominate evergreen trees in the 

Park, is considered the first successional forest after restocking on previously cropland or pasture 

– “old field”, it would be worthwhile to cross examine the current evergreen coverage and 

historic disturbance (Figure 21). The overlay result shows that most of evergreen forests (70%) 

at present time are located in old fields, where ecological succession occurred after pre-park 

pasture and row crop use. The old fields are generally found in three habitat types (Olson and 

Noble, 2005): 1) on relatively level uplands with interbedded sandstone and limestone, 2) in sub-

xeric limestone habitats found in karst valley, and 3) on floodplain alluvium deposit. 
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Considering future succession stages, the eastern red cedar dominated evergreen forest 

will only be supported in xeric and sub-xeric habitats. We can predict that most cedar trees 

currently found in mesic habitat will be replaced by deciduous trees as succession continues and 

the forest matures.  Figure 22 shows the overlay result of the combination of Xeric and Sub-

Xeric habitat types with evergreen forests growing in previously disturbed areas. The evergreen 

forests currently growing in Xeric or Sub-Xeric habitat types amounted to about 40% of the total 

evergreen forests and cedar trees in these area will likely to survive. The remaining 60% of 

evergreen forests neither grow on Xeric nor Sub-Xeric habitat will likely be succeeded by 

deciduous forests in the future. How further succession of the coniferous forests by deciduous 

forests will affect the fire regime will depend on the habitat characteristics of the location (Table 

3).  
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Fig.21: The result of evergreen forests on disturbed areas in the Park 
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Fig.22: The location of Xeric or Sub-Xeric Evergreen habitat on Disturbed areas 
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CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATIONS 

 

This study demonstrated the procedures and potential of integrating remote sensing and 

GIS techniques to model habitat types and map vegetation types of Mammoth Cave National 

Park. This research has followed several main steps, which included: (1) the acquisition of 

remotely sensed data, LiDAR data, bedrock, and other ancillary data, (2) image preprocessing, 

such as atmospheric correction, PCA transformation, and EVI calculation, (3) habitat type 

modeling using the combination of aspect, slope and bedrock, (4) unsupervised classification 

using ISODATA algorithm for two different datasets: PCA, and PCA and EVI Index, (5) 

interpretation of the results and accuracy assessment. 

Vegetation habitat modeling attempts to predict the geographic distribution of plant cover 

types from mapped environmental variables. The research demonstrated that a simple model 

using three environmental factors – slope, aspect and bedrock – was able to determine to a large 

degree the different habitat types in Mammoth Cave National Park. The variation of aspect and 

slope affect the amount of solar radiation and water available to vegetation, which influences the 

contrasting habitat types formed in the long term. Bedrock, one of the most influential factors in 

the study area, primarily controls the soil types and drainage conditions that support the various 

habitat types. Field verification of the results at 29 sites selected from the pool of 600 random 

locations showed that the model correctly predicted the habitat types of 22 sites (76%). 

Inconsistencies found at three sites were due to human disturbance before the establishment of 

the Park. The only category that would need further work is Acid Xeric type where the model 

missed the mark due to specific condition where this habitat could be found and the resolution of 

the model.  
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The habitat model result indicates that Acid and Calcareous are the two dominant habitat 

categories within the Park, which accounted for 46.24% and 49.74% of the total area 

respectively. Acid Mesic and Calcareous Sub-Mesic were the two most popular habitats, 

representing 29.26% and 21.03% of the area respectively. Fire-sensitive habitat types are 

surrounded by fire-tolerant types which acts as a buffer when fire events happen. 

Leaf-on and leaf-off Satellite images from two different dates were used to map the 

vegetation types. PCA technique was used to transform the two-date image composite to four 

principal components that accounted for 99% of the variance, which was used as input to image 

classification. EVI Index was incorporated to improve classification accuracy. Accuracies of 

classification results were evaluated by reference data from 538 field plots. The overall accuracy 

of PCA and EVI Index was 85%, better than using PCA alone or the NLCD 2011. The 

accuracies of mixed and evergreen categories were significantly improved with the inclusion of 

EVI Index compared to using PCA technique alone. Comparing the accuracy report of NLCD 

2011, the accuracy of mixed category was significantly improved in both producer’s and user’s 

accuracy. Deciduous forest had higher accuracies among all forest types. With the inclusion of 

EVI Index, the producer’s accuracy of deciduous forest was 97%.  

Forest restocking on previous cropland or pasture has resulted in ecological succession. 

Evergreen forests made of mostly eastern red cedar was the first forest to establish. At present 

time, about 70% of evergreen forest is found in previously disturbed area (historic cropland and 

pasture). Later succession of vegetation would depend on the habitat types. Overlay of the 

habitat model result and vegetation type showed that about 40% of the evergreen forests are 

located in Xeric or Sub-Xeric habitats. They are likely to prevail while the remaining 60% of 

evergreen forests will likely be succeed by deciduous forests in the future.  
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There are some limitations of habitat modeling as well as vegetation mapping in this 

study. The result of habitat modeling was restricted by the precision of the geology map, the 

criteria that distinct different habitat types, and the resolution of the model. In the Park, Acid 

Xeric habitat type occurs at specific locations with steep sandstone cliff, usually indicated by a 

pine stand on top, which the model missed. In addition, the transition zone between different 

habitat types is hard to identify due to previous disturbance.  

The following factors have limited the results of vegetation mapping: 1) spatial resolution 

of Landsat-8 OLI imagery has made the distinction of mixed forests from evergreen forests 

difficult; 2) many areas in the shadow as a result of topography and sun angle were hard to 

classify, regardless of sun angle correction;  3) even with the inclusion of EVI Index, spectral 

confusion remain among mixed, deciduous, and evergreen forest pixels; and 4) the limitation of 

field reference data due to area accessibility.  

Vegetation habitat types provide baseline data set for the development of successional 

plant community classification for Mammoth Cave National Park (Cooper et al., 1991). Habitat 

also provides a natural plant stratification within the Park area (Cooper et al., 1991). 

Furthermore, it acts as a means of predicting both site quality and response following disturbance 

(Cooper et al., 1991). The fire-vulnerable habitat types account for one-fifth of the total Park area 

and the rest are fire-resistant habitat types. The results of habitat modeling and vegetation 

mapping from this study provide up-to-date information for fire management planning and 

resource management at Mammoth Cave National Park.  
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Appendix I  

Field notes for 30 selected sites for the accuracy assessment of habitat modeling result 

Sample# ID# Slope Aspect Bedrock Habitat Species 

1 
 

352 7° 285° Sandstone Acid Mesic Post oak, sugar maple, pignut 

hickory, white ash, maple trees 

2 557 20° 245° Sandstone  Acid Sub-

Xeric 

White oak, pignut hickory, thinner 

trees over story and under tulip 

popular and black gum  

3 463 25° 43° Limestone Calcareous 

Supra-

Mesic 

Green ash, turnip popular dominant, 

sugar maple, middle canopy 

pawpaw, ferns, spice bush, 

maidenhair fern   

4 157 0° 0° Sandstone Acid Mesic Chestnut oak, white ash, red oak, no 

ferns 

5 152 3° 327° Sandstone Acid  Mesic East red cedar, sugar maple, 

blackberry, southern red oak, white 

oak, old field, cedar succession 

mixed, Christmas fern 

6 295 20° 190° Sandstone

and 

limestone 

boundary 

Acid Sub-

xeric 

Southern red oak, black oak, sugar 

maple, white ash, Christmas fern 

7 185 16° 45° Limestone Calcareous 

Mesic 

Black oak, cedar maple, southern 

red oak, Christmas fern.  

8 434 19° 100° Limestone Calcareous 

Mesic 

Large and medium tulip popular, 

red oak, American chestnut, muscle 

beech, American columbo.  

9 228 27° 68° Sandstone Acid Mesic White oak(several), dogwood, black 

gum (understory), pignut hickory, 

red sweet gum 

10 521 24° 231° Sandstone Acid Sub-

Xeric 

White oak, pignut hickory, sugar 

maple.  

11 353 4° 215° Limestone Calcareous 

Sub-Mesic 

Post oak, black oak, pignut hickory, 

ostrya southern fern  

 

12 

 

258 

 

20° 

 

351° 

 

Sandstone 

 

Acid Supra-

Mesic 

Big white oak dominate, black oak, 

young tulip popular, sugar maple, 

beech, spice bush, fern. Young tulip 

popular (many of them are under 

story), sassafras 

13 95 3° 154° Sandstone Calcareous 

Sub-Mesic 

Upland swamp, southern red oak, 

black gum, black oak, winged elm, 

tulip popular, red maple, Christmas 

fern 

14 383 32° 354° Limestone 

covered 

with 

sandstone 

Calcareous 

Mesic 

Beech, tulip popular, red oak, sugar 

maple, fern, spicebush  
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15 156 4° 189° Limestone Calcareous 

Sub-Mesic 

Old field, cedar, beech, black 

cherry, black oak, sugar maple, 

black gum, sourwood, dogwood, 

ferns 

16 22 28° 154° Sandstone Acid Sub-

Xeric 

White oak, red maple, scarlet oak, 

black oak, sugar maple, black gum, 

sourwood, dogwood, ferns 

17 437 6° 4° Limestone Calcareous 

Sub-Mesic 

Old field, Virginia pine, red cedar, 

dogwood, sparkle berry, southern 

red oak 

18 296 25° 45° Limestone Calcareous 

Supra-

Mesic 

Tulip popular, white oak, shagged-

bark hickory, sugar maple, 

(possible) shell-bark hickory, 

pawpaw, maidenhair fern, 

mayapple, wild yam, Solomon seal, 

bed strawl 

19 429 13° 195° Limestone Calcareous 

Xeric 

Eastern red cedar (not successional), 

not very tall, chinkapin oak, 

shagged-bark hickory, blue ash, 

erosion mark on  Calcareous rock, 

rillenkarren, sugar maple should not 

be here 

20 100 17° 229° Sandstone 

and 

limestone 

boundary 

Acid Sub-

xeric 

Black oak, white oak, dogwood, 

cedar, scarlet oak, pignut hickory, 

red bud seeding, Solomon seal, 

grape vine 

21 550 26° 172° Sandstone Acid Sub-

Xeric 

White oak, pignut hickory, tulip 

popular, black walnut, black gum, 

Christmas fern, beech(small) 

trillium, Indian cup.  

22 16 27° 334° Limestone Calcareous 

Supra-

Mesic 

Horse chestnut, green and white ash, 

sugar maple, red oak, spice bush, 

dense spice bush shrubs, wild 

ginger, wingstem, several kinds of 

ferns 

23 178 10° 237° Limestone Calcareous 

Xeric 

Shagged-bark hickory, white ash, 

Chinkapin oak, blue ash, cedar 

(eastern red), (chestnut oak 

sapping), sugar maple (small), rock 

cress 

24 456 18° 169° Limestone Calcareous 

Sub-Xeric 

Chinkapin oak, cedar, red bud, 

shagged-bark hickory, sugar maple, 

unknown shrub, boundary on 

Calcareous Xeric 

25 233 18° 179° Sandstone Acid Sub-

Xeric 

Ferns, cedar, scarlet oak, black gum, 

beech(lack of fire), southern red 

oak, pignut hickory, California 

buckthorn 

26 361 7° 127° Limestone Calcareous 

Sub-Xeric 

Cedar, sugar maple, chinkapin oak, 

dead white ash trees (6), red bud. 
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One live white ash, blueberry bush, 

American columbo 

27 555 24° 248° Sandstone Acid Sub-

Xeric 

White oak, tulip popular, sour 

wood, sugar maple, little under 

story, not steep enough, not xeric. 

Xeric would be on steep cliff pine 

stand 

28 

 

448 14° 56° Limestone Calcareous 

Mesic 

Tulip popular over story with pignut 

hickory, dogwood, muscle beech, 

southern red bud, Christmas fern, 

American columbo, native iris, 

mayapple 

29 402 Artificial cliff by road cut, no good 

30 122 11° 180° Limestone Calcareous 

Sub-Mesic 

Eastern red cedar, white oak, 

chinkapin oak, old field, ash, 

mayapple, Christmas fern, spice 

bush.  
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