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ABSTRACT

One of the great themes of algebraic combinatorics is the exploration of connections

between ordered structures and group actions/representations. This thesis furthers

this theme by presenting diamond-colored distributive lattice models of certain poly-

nomials that are invariant under the action of the type Bn Weyl group. Initially we

realize these lattices as diamond-colored lattices of order ideals from certain vertex-

colored posets. We explore various coordinatizations of these lattices via partition-like

elements, tableaux, and binary-type representations called tally diagrams. We also

examine algebraic properties of these lattices. In particular, we prove that our type

Bn lattices are effective models for the type Bn elementary Weyl symmetric functions.
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Chapter 1

Introduction
Integer partitions appear in various branches of mathematics, perhaps most con-

spicuously in enumerative combinatorics and representation theory. In these latter

contexts, partial orderings of integer partitions are often fruitfully employed. For

one example, Young’s lattice is the ordering of all integer partitions by containment

of their partition diagrams (also known as Ferrers diagrams). This lattice is a tool

for the study of the irreducible representations of the symmetric groups; for R. P.

Stanley, Young’s lattice was an originating example of objects he named “differential

posets,” which can be viewed as combinatorial models of Weyl algebras. See [Stan1]

for further discussion.

For another example of an effective use of partial orderings of integer partitions,

we reprise and amplify in this paper some aspects of the story of a curious family of

distributive lattice orderings of certain partitions that are naturally affiliated with the

q-binomial coefficients (aka Gaussian polynomials). Lattices in this two-parameter

family can be indexed by integers k and N for which 1 ≤ k ≤ N − 1, where the

lattice L(k,N − k) is the set of integer partitions with no more than k parts and

with largest part no larger than N − k together with the partial ordering induced

by Young’s lattice. The rank generating function of L(k,N − k) is easily seen to

be the q-binomial coefficient
(
N
k

)
q
. Moreover, L(k,N − k) is closely connected to



2

the kth fundamental representation of the simple complex special linear Lie algebra

sl(N,C), as in [Sag] or [Stan2], as well as the kth elementary symmetric function

whose N variables are permuted by the symmetric group SN , see [Proc2] or [HL].

(Henceforth, we assume Lie algebras are complex.) These connections are effected by

a certain natural coloring of the edges of the order diagram (aka Hasse diagram) for

L(k,N − k): The colored edges indicate how certain sl(N,C)/SN generators act on

basis vectors/monomials associated with vertices of the order diagram.

Now, elementary symmetric functions are special occurrences of Schur functions,

and the latter are symmetric functions that can be expressed as “bialternants” (that

is, as quotients of certain alternants) under the action of SN . With reference to

the classification of complex simple Lie algebras by Dynkin diagrams (see the so-

called finitary GCM graphs of §2 below), we can view SN as the type AN−1 Weyl

group and therefore naturally extend to other Weyl groups the general notion of a

symmetric function and the more specific notion of a bialternant. In the language of

[Don4] and [ADLMPPW], L(k,N−k) is both a “supporting graph” for a fundamental

representation of the type AN−1 simple Lie algebra and a “splitting poset” for a type

AN−1 elementary Weyl symmetric function. With these reasons in mind, we shall refer

to L(k,N − k) with the aforementioned edge-coloring as a “type AN−1 elementary

lattice” and use the more specific notation LA(k,N − k).

That LA(k,N − k) serves as a combinatorial model for a simple Lie algebra rep-

resentation and its associated Weyl group symmetric function makes LA(k,N − k)

a distinctive kind of object. This distinction is all the more pronounced given that

LA(k,N − k) is the only possible such model for this representation/symmetric func-

tion pair, cf. [Don4] and [Don7]. We note that while a supporting graph for a given

simple Lie algebra representation is automatically a splitting poset for the associated
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Weyl group symmetric function (§4 of [Don7]), the reverse is not always true; see for

example [ADLP] and [ADLMPPW]. An ongoing project developed by the advisor

of this thesis and many collaborators is to seek out poset models for other simple

Lie algebra representations and/or their companion Weyl group symmetric functions.

Explicit renderings of such posets are relatively rare and usually quite pretty.

While these algebraic connections provide some of the impetus for the study of the

type A elementary lattices, another motivating interest is that they have many desir-

able combinatorial features which one might hope to generalize. For example, these

ranked lattices have rank generating functions expressible as quotients of products;

they are rank symmetric, rank unimodal, and strongly Sperner (see e.g. [Proc1]); they

are the natural environment for studying a certain move-minimizing game involving

dominoes (see [DDS]); and they afford a salutary environment for a combinatorial

proof of the unimodality of q-binomial coefficients (see [O] and [Zeil]). Several of

the preceding features — namely, rank generating functions expressed as quotients

of products; rank symmetry; and rank unimodality — can be viewed as direct conse-

quences of the fact that the type A elementary lattices are splitting posets (actually,

splitting distributive lattices) for the type A elementary Weyl symmetric functions.

For these reasons, we believe it is beneficial to seek out splitting posets for other

families of Weyl symmetric functions, whether or not such posets can serve as models

for Lie algebra representations.

Some terminology in the following paragraphs borrows from §2 and §4 below.

Associated to each connected finitary GCM graph Xn in Figure 2.1 (where X ∈

{A,B,C,D,E,F,G}) is a finite irreducible root system, a finite irreducible Weyl group,

and a finite-dimensional simple Lie algebra, and for each node γk of the graph, there

is a corresponding fundamental weight ωk. The notation χXn
ωk

refers to the symmetric
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function associated with the fundamental weight ωk under the action of the type Xn

Weyl group; we call this a “type Xn elementary symmetric function.” Some core

results about the type A elementary lattices are recapitulated in this paper. Some

type C analogs of the type A elementary lattices are provided in [Don2] and [Don3],

and from here on, we refer to these as type C elementary lattices. The type C el-

ementary lattices are splitting distributive lattices for the type C elementary Weyl

symmetric functions and are supporting graphs for the fundamental representations

of the associate type C (symplectic) simple Lie algebra. In this paper we present type

B elementary lattices and obtain some key results. Here is a tabular summary:

Finitary

GCM

graph Xm

Natural/named

elementary

lattices

Splitting posets

for χXm
ωk

?

Supporting graphs

for

kth fundamental

simple Lie algebra

representation?

AN−1

LA(k,N − k)

of classical fame

Yes (well-known)

(See §2 and 4 below)

Yes (well-known)

(See [Proc2], [Don4],

[HL], etc)

Bn

LKN
B (k, 2n+ 1− k) and

LDeC
B (k, 2n+ 1− k)

of this paper

Yes

(See §2-5 below)

Yes

(In preparation by

thesis advisor)

Cn

LKN
C (k, 2n− k) and

LDeC
C (k, 2n− k)

of [Don2] and

[Don4]

Yes

(Supporting graph

⇒ splitting poset)

Yes

(See §[Don2] and

[Don4])
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We know of analogs in other types as well. All minuscule, short adjoint (aka

quasi-minuscule), and adjoint simple Lie algebra representations in types B, D, E,

F, and G are associated with certain fundamental weights. (The weight associated

with a short adjoint (respectively, adjoint) representation is the highest short root

(respectively, highest root); in types D and E, all roots have the same length, and

the convention is that these are all long.) In each case, splitting modular lattices

for the affiliated elementary Weyl symmetric functions are known. See [Don5] for

discussion of splitting modular lattices associated with the short adjoint and adjoint

representations in all types. See [Don4] for discussion of splitting modular lattices

associated with the minuscule representations in all types (E8, F4, and G2 have no

minuscule representations); for the minuscule cases, all these modular lattices are, in

fact, distributive. That is, for the finitary GCM graph / fundamental weight pairs

(Xn, ωk) in the table below, we have splitting modular/distributive lattices for χXn
ωk

.

We believe these should be called elementary lattices.

Finitary GCM graph Xm Dn E6 E7 E8 F4 G2

Minuscule weights ωk k = 1, n− 1, n k = 1, 6 k = 7 — — —

Highest short root ωk — — — — k = 4 k = 1

Highest root ωk k = 2 k = 2 k = 1 k = 8 k = 1 k = 2

Note that, besides those cases reported in the above table, type D analogs of the

type A/B/C elementary lattices are not known. To us, this is a very intriguing open

question, which we formally state as follows:

Open Problem 1.1 Find type D analogs of the type A/B/C elementary lattices.

Before we outline the main content of the paper, we make the following comment

on its overall context. While semisimple Lie algebra representation theory is part of

the larger context of this work, it is not needed in order to understand the results

obtained / methods used here. In this paper, we only employ methodologies of finite
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poset theory, enumerative combinatorics, general Weyl symmetric function theory,

and actions of finite groups.

Within this environment, then, the main goal of this paper is to present type B

analogs of the type A elementary lattices and demonstrate that these are splitting

distributive lattices for certain type B elementary (and “almost-elementary”) Weyl

symmetric functions. In particular, in §3, we present two families of edge-colored

distributive lattices as partial orderings of certain partitions and/or partition-like

objects. These families of lattices are indexed by two integer parameters k and n, with

1 ≤ k ≤ n. For fixed k and n, the two type B lattices are denoted LKN
B (k, 2n+ 1− k)

and LDeC
B (k, 2n+1−k). In §3, we extend many of the basic combinatorial properties of

LA(k,N−k) to LKN
B (k, 2n+1−k) and LDeC

B (k, 2n+1−k). The edge coloring presented

in §3 will allow us to view weight-generating functions naturally associated with

LKN
B (k, 2n+1−k) and LDeC

B (k, 2n+1−k) as certain symmetric functions with respect

to the action of the type Bn Weyl group. Our main result (Theorem 5.1) demonstrates,

via the application of a vertex-coloring method developed by the Donnelly in [Don7],

that LKN
B (k, 2n + 1 − k) and LDeC

B (k, 2n + 1 − k) are splitting posets for the kth type

Bn elementary Weyl symmetric function, when k < n. (When k = n, the associated

Bn-symmetric function is not elementary but is, nonetheless, a Weyl bialternant.)

Definitions and foundational results for some of the crucial combinatorial notions

used here are presented in §2; §4 provides some background on the theory of poset

models for Weyl group symmetric functions. The type A elementary lattices and a

special family of type B lattices will serve to illustrate the concepts of §2 and §4.



Chapter 2

Combinatorial preliminaries, type
A elementary lattices, and a special
family of type B lattices

To begin, we make a few comments about the general milieu of our work. Certain

finite graph/integer matrix pairs, often referred to as Dynkin diagrams, are identifiers

of various classical objects such as root systems, Coxeter groups, and Kac–Moody Lie

algebras. For us, a choice of such a diagram, herein referred to as a “GCM graph,” will

serve to declare the immediate algebraic/combinatorial environment for any results

that follow. Thus, as in §1, to say “type AN−1” is to refer to the size N2 − N root

system, the N !-element Weyl group (which is the symmetric group SN), and/or the

(N2 − 1)-dimensional simple Lie algebra sl(N,C) that are each associated with the

finitary GCM graph AN−1. For purposes of this chapter, however, the aforementioned

algebraic contexts are suppressed and the related purely combinatorial notions are

brought to the fore.

Following [Don6], we take as our starting point some given simple graph Γ on

n nodes. In particular, Γ has no loops and no multiple edges. Nodes {γi}i∈In for

Γ are indexed by elements of some fixed totally ordered set In of size n (usually

In = {1 < 2 < · · · < n}). For each pair of adjacent nodes γi and γj in Γ, choose two

negative integers aij and aji. Extend this to an n × n matrix A = (aij)i,j∈In where,
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Figure 2.1: Connected finitary GCM graphs.

An (n ≥ 1) s s s s s s1 2 3 n− 2 n− 1 n

Bn (n ≥ 3) s s s s s s�--
1 2 3 n− 2 n− 1 n

Cn (n ≥ 2) s s s s s s��-
1 2 3 n− 2 n− 1 n

Dn (n ≥ 4) s s s s s s
s

���
���

XXXXXX

1 2 3 n− 3 n− 2

n− 1

n

E6 s s s
s

s s1

2

3 4 5 6

E7 s s s
s

s s s1

2

3 4 5 6 7

E8 s s s
s

s s s s1

2

3 4 5 6 7 8

F4
s s s s-- �

1 2 3 4

G2
s s- ���

1 2

in addition to the negative integers aij and aji taken from the edges of Γ, we have

aii := 2 for all i ∈ In and aij := 0 if there is no edge in Γ between nodes γi and γj.

We call the pair (Γ, A) a GCM graph, since A is a ‘generalized Cartan matrix’ as in

[Kac] and [Kum]∗.

∗Such matrices are the starting point for the study of Kac–Moody Lie algebras. For us, these

matrices also encode information about root systems and their associated Weyl groups. The latter

provide a suitable environment for studying “Weyl symmetric functions,” which can be thought of

as special multivariate Laurent polynomials which are invariant under a certain natural action of the

Weyl group. An overarching goal of our work is to find nice poset models for such Weyl symmetric

functions. See §4 for further development of the ideas in the preceding two sentences.
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We say a GCM graph (Γ, A) is connected if Γ is. We depict a generic connected

two-node GCM graph as r
γ1

r
γ2

- �
p q , where p = −a12 and q = −a21. Those

two-node GCM those graphs which have p = 1 and q = 1, 2, or 3 (respectively) have

special names:

A2r
γ1

r
γ2

- �
C2r

γ1
r
γ2

- ��
G2r

γ1
r
γ2

- ���

When p = 1 and q = 1 it is convenient to use the graph r
γ1

r
γ2 to represent

the GCM graph A2. A GCM graph (Γ, A) is finitary if each connected component

of (Γ, A) (in the obvious sense) is one of the graphs of Figure 2.1. In exactly these

cases, the affiliated root system and Weyl group are irreducible and finite and the

related Kac–Moody alegbra is simple and finite-dimensional, and we call the matrix

A a Cartan matrix. We number the nodes of connected finitary GCM graphs as in

§11.4 of [Hum]. The special two-node GCM graphs A2, C2, and G2 above are finitary

GCM graphs with Cartan matrices

 2 −1

−1 2

,

 2 −1

−2 2

, and

 2 −1

−3 2

. We

identify any irreducible finite root system (or affiliated irreducible finite Weyl group)

by its associated GCM graph name Xn, where X ∈ {A,B,C,D,E,F,G}.

Poset principles: A précis. Our interest is in finding combinatorially inter-

esting partially ordered sets that exhibit and model aspects of the various algebraic

structures related to the connected finitary GCM graphs. So, we should set some

notation and terminology relating to posets. Here we provide a brief overview that

highlights idiosyncratic or perhaps more specialized poset concepts. We mostly follow

the conventions of [DDDS] and references therein, which can be consulted for more

detail.

Given a poset P with partial ordering relation “≤” (reflexive, anti-symmetric,

transitive), a covering relation is an ordered pair of poset elements (x,y) ∈ P × P

with the property that x = z or y = z whenever x ≤ z ≤ y. We depict the ordered
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pair (x,y) as a directed edge x→ y. The order diagram for this poset, also denoted

by P , is the directed graph whose vertices are the poset elements and whose directed

edges are the covering relations. When needed, we use the notation V(P ) to denote

the vertex set of the order diagram and E(P ) to denote the set of directed edges. All

posets in this paper are finite. When we depict posets, edges will be directed upward,

so arrowheads on directed edges will often not be drawn. We apply graph theoretic

notions (connectedness, adjacency of vertices, etc) to a poset by applying them to its

order diagram.

A poset R is ranked if there is a nonnegative integer ` and a surjective function

ρ : R −→ {0, 1, . . . , `} for which ρ(x)+1 = ρ(y) for any covering relation x→ y. The

number ` is the length of R with respect to the rank function ρ. The related depth

function δ : R −→ {0, 1, . . . , `} is given by δ(x) := `− ρ(x). (If R is connected, then

the rank and depth functions are unique.) This ranked poset is rank symmetric if,

for each integer r ∈ {0, 1, . . . , `} we have |ρ−1(r)| = |ρ−1(`− r)|. It is rank unimodal

if, for some integer u ∈ {0, 1, . . . , `}, we have

|ρ−1(0)| ≤ |ρ−1(1)| ≤ · · · ≤ |ρ−1(u− 1)| ≤ |ρ−1(u)|

≥ |ρ−1(u+ 1)| ≥ · · · ≥ |ρ−1(`− 1)| ≥ |ρ−1(`)|.

We define the rank generating function RGF(R; q) by the rule

RGF(R; q) :=
∑
x∈R

qρ(x) =
∑̀
i=0

|ρ−1(i)|qi.

A lattice L is a poset for which any two given elements x and y of L have a (unique)

least upper bound, denoted x∨y and called their join, and a (unique) greatest lower

bound, denoted x∧y and called their meet. Such a lattice is necessarily connected and

has a unique maximal element max(L) and a unique minimal element min(L). This

lattice is modular by definition if and only if L is ranked and ρ(x ∧ y) + ρ(x ∨ y) =

ρ(x) + ρ(y) for any x,y ∈ L. The lattice L is distributive if and only if meets
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distribute over joins and vice-versa; that is, x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) for any given x,y, z ∈ L. Any distributive lattice is

modular, but not all modular lattices are distributive.

In a distributive lattice L, an element x is a join irreducible if x covers exactly

one other element of L. Let j(L) be the set of join irreducible elements of L with

partial order induced by L; we call j(L) the poset of join irreducibles of L. Now let

P be a poset. A subset X from P is an order ideal if, for any x ∈ X and any x′ in P

with x′ ≤ x, we have x′ ∈ X . Let J (P ) be the set of order ideals from P partially

ordered by subset containment. Since meets and joins in J (P ) are (respectively) just

intersections and unions of sets, it is easy to see that J(P ) is a distributive lattice.

What is sometimes called The Fundamental Theorem of Finite Distributive Lattices

asserts that for any distributive lattice L and any poset P we have:

J
(
j(L)

)
is isomorphic to L, and j

(
J(P )

)
is isomorphic to P.

In fact, the preceding notions can be usefully colorized. Let I be a set of order

n; for convenience, in the following discussion we take I to be {1, 2, . . . , n}. A poset

P together with a function vertexcolor : V(P ) −→ I is a vertex-colored poset.

Similarly, P together with a function edgecolor : E(P ) −→ I is an edge-colored

poset. An edge x → y in P with color i ∈ I is denoted x
i→ y. Assuming P is

edge-colored and J ⊆ I, then the J-component of an element x ∈ P is the connected

subgraph compJ(x) of the order diagram of P whose vertices and edges are obtained

as follows: The vertices V(compJ(x)) are all those poset elements that can be reached

from x by traversing a path whose edge colors are in J (we disregard edge directions

when traversing edges along such a path); the edges E(compJ(x)) are all edges from

E(P ) whose colors are in J and which are incident with some vertex in V(compJ(x)).

Now suppose R is ranked poset with edges colored by the set I. Then for any x ∈ R
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and any i ∈ I, the i-component compi(x) is ranked with a unique rank function ρi

and a unique depth function δi. We define the weight of x, denoted wt(x), to be the

integer n-tuple

wt(x) =
(
ρi(x)− δi(x)

)
i∈I

.

Let z1, z2, . . . , zn be variables, and for an integer n-tuple µ = (µ1, µ2, . . . , µn) declare

that zµ := zµ11 zµ22 · · · zµnn . The weight generating function WGF(R; z1, . . . , zn) in the

variables z1, . . . , zn is defined by the rule

WGF(R; z1, . . . , zn) :=
∑
x∈R

zwt(x).

Now let Xn be a connected finitary GCM graph from Figure 2.1, and for any i ∈ I,

let αi be the ith row vector of the associated Cartan matrix A = (aij)i,j∈I . We say the

edge-colored ranked poset R is Xn-structured if wt(x) + αi = wt(y) whenever x
i→ y

in R. This condition is equivalent to the assertion that for any edge x
i→ y in R and

for any j 6= i, we have

ρj(x)− δj(x) + aij = ρj(y)− δj(y).

Now suppose L is a distributive lattice whose edges are colored by I. Assign

color i to a join irreducible x if i is the color of the edge beneath x. We denote the

resulting vertex-colored poset of join irreducibles by jcolor(L). Now, for any poset P

that is vertex-colored by I, note that there is a covering relation X → Y in J(P ) if

and only if X ⊂ Y and there exists some y ∈ Y \ X such that Y = X ∪ {y}. If j is

the color of the vertex y, then assign color j to the edge X → Y in the distributive

lattice J(P ). We denote the resulting edge-colored distributive lattice by Jcolor(P ).

Now, Jcolor(P ) has the property that in any “diamond” of colored edges, parallel

edges have the same colors; that is, if rr r r��

@@
@@

��k l
i j

is an edge-colored subgraph of the order
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diagram of Jcolor(P ), then i = l and j = k. We say the distributive lattice Jcolor(P ) is

diamond-colored. The following is a colorized version of The Fundamental Theorem

of Finite Distributive Lattices: Assume that a poset P is vertex-colored by I, that a

distributive lattice L is edge-colored by I, and that L is diamond-colored. Then:

Jcolor

(
jcolor(L)

)
is isomorphic to L, and jcolor

(
Jcolor(P )

)
is isomorphic to P,

where these isomorphisms preserve colors as well as poset structure.

Very often in our work, the combinatorial objects of interest occur naturally as

substructures of other objects. In this paragraph, we briefly remark on the poset

substructures that are most useful for our purposes here. Given a subset P of a poset

Q, let P inherit the partial ordering of Q; call P a subposet in the induced order.

For posets (P,≤P ) and (Q,≤Q), suppose P ⊆ Q and x ≤P y ⇒ x ≤Q y for all

x,y ∈ P . Then P is a weak subposet of Q. We apply the language of vertex- and/or

edge-coloring to subposets in the obvious ways. Now let L be a lattice with partial

ordering ≤L and meet and join operations ∧L and ∨L respectively. Let K be a vertex

subset of L. Suppose that K has a lattice partial ordering ≤K of its own with meet

and join operations ∧K and ∨K respectively. We say K is a sublattice of L if for all x

and y in K we have x∧K y = x∧Ly and x∨K y = x∨Ly. It is easy to see that if K is

a sublattice of L then for all x and y in K we have x ≤K y if and only if x ≤L y. That

is, K is a weak subposet of L and a subposet in the induced order. If, in addition,

K and L are edge-colored and K is an edge-colored weak subposet of L, then call K

an edge-colored sublattice of L. Whether or not K and L are edge-colored, if K is a

sublattice of L, if both K and L are ranked, and if both have the same length, then

we say K is a full-length sublattice of L. In this case, for any given x,y ∈ K, it can

be seen that the rank of x as an element of K is the same as its rank as an element of

L and that y covers x in K if and only if y covers x in L. It can also be seen that if
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P is a vertex-colored weak subposet of a vertex-colored poset Q with |P | = |Q|, then

Jcolor(Q) is a full-length sublattice of Jcolor(P ).

The type A elementary lattices. Fix integers k and N , with 0 < k < N . A

k× (N − k) partition is an integer k-tuple τ = (τ1, τ2, . . . , τk) for which N − k ≥ τ1 ≥

τ2 ≥ · · · ≥ τk ≥ 0. That is, if we view τ as an integer partition (with some parts

allowed to be zero), then the partition diagram for τ fits inside a k× (N − k) grid of

boxes. A natural partial ordering of such objects prescribes σ ≤ τ for k × (N − k)

partitions σ = (σ1, . . . , σk) and τ = (τ1, . . . , τk) if and only if σp ≤ τp for any p ∈

{1, . . . , k}; we say that σ ≤ τ in the componentwise order. Note that σ ≤ τ if and

only if the partition diagram for σ is contained in the partition diagram for τ . Let

L(k,N−k) be the set of all k×(N−k) partitions under this partial ordering. It is easy

to see that L(k,N − k) is a distributive lattice, with meet and join operations given

by σ∧ τ = (min{σ1, τ1}, . . . ,min{σk, τk}) and σ∨ τ = (max{σ1, τ1}, . . . ,max{σk, τk})

respectively.

It is crucial to our perspective to view L(k,N − k) as an edge-colored distributive

lattice, which we denote LA(k,N − k) and refer to as the kth elementary lattice of

type AN−1. Our approach in building this family of edge-colored (in fact diamond-

colored) distributive lattices is guided by the principles of §2 of [DDDS] as well as the

development of the main example in §3 of that paper. In that spirit, we take as our

starting point a certain natural family of vertex-colored posets, from which we build

the type A elementary lattices. We will see in Proposition 2.1 that the descriptions

of LA(k,N − k) via partitions (as above) and via order ideals from a vertex-colored

poset (as below) are compatible.

Let PA(k,N − k) denote the poset of pairs {(r, c) | 1 ≤ r ≤ k, 1 ≤ c ≤ N − k}

partially ordered by component-wise comparison: (r1, c1) ≤ (r2, c2) if and only if
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r1 ≤ r2 and c1 ≤ c2. We identify P := PA(k,N − k) with its order diagram, thought

of as a directed graph whose vertex set V(P ) is the pairs (r, c) comprising P and

whose set of directed edges E(P ) is the set of covering relations

{(r1, c1)→ (r2, c2) | (ri, ci) ∈ V(P ) for i = 1, 2 and either r2 = r1 + 1 or c2 = c1 + 1}.

We think of r and c as row-like and column-like indices of the positions of the ver-

tices of P . We color the vertices of P via the function vertexcolor : V(P ) −→

{1, 2, . . . , N − 1} wherein

vertexcolor(r, c) := r − c+N − k.

See Figure 2.2 for an example. We can now build L := LA(k,N − k) from P =

PA(k,N −k) by setting L := Jcolor(P ). That is, L is the diamond-colored distributive

lattice of order ideals taken from P .

Next we consider other useful ways to coordinatize the elements of L. In particular,

we detail next how to convert order ideals to partitions to columnar tableaux to

binary sequences (most often referred to here as “tally diagrams”). These notions are

illustrated in Figure 2.3. To effect these conversions, it is convenient at the outset

to rotate the order diagram of PA(k,N − k) clockwise by 135◦. From this viewpoint,

the element (r, c) ∈ PA(k,N − k) occurs at the matrix coordinate location (r, c), and

each order ideal T from PA(k,N − k) can now easily be coordinatized as a sequence

of counts related to the rows of the rotated figure. See Figure 2.3 below.

Formally, we associate a partition τ , a column T , and a tally diagram t to each

order ideal T from PA(k,N − k) as follows. First, τ = τ(T ) is the k-tuple given

by τp := |{(r, c) ∈ T : r = p}| when p ∈ {1, 2, . . . , k}. It is evident that τ is a

k × (N − k) partition, and that this process can be reversed to obtain an order ideal

from any given k × (N − k) partition. Second, the columnar tableau T = T (T ) is
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Figure 2.2: Below is the edge-colored lattice LA(3, 4) = Jcolor(PA(3, 4)).

(Vertex and edge colors in this figure are best viewed in a color display.)


Jcolor


=

the k-tuple for which Tp = N − k + p − τp. Note that 1 ≤ T1 < · · · < Tk ≤ N .

Note that this conversion process can be reversed to obtain an k× (N − k) partition

from any given columnar tableau whose k strictly increasing integer entries are from

the set {1, 2, . . . , N}. The symbol T will simultaneously denote both the column

(T1, . . . , Tk) and the set {T1, . . . , Tk}. (In general, for k-tuples X = (X1, . . . , Xk) and

Y = (Y1, . . . , Yk), we say X ≤ Y in the reverse-componentwise order if and only if

Xp ≥ Yp for each p ∈ {1, 2, . . . , k}.) Third, the (type A) tally diagram t = t(T )

associated to the column T is the binary N -tuple t = (t1, . . . , tN), where tp = 1 if

p ∈ T and tp = 0 if p 6∈ T , 1 ≤ p ≤ N . Of course,
∑N

i=1 ti = k. This conversion process
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can be reversed to obtain a columnar tableau that is a size k subset of {1, 2, . . . , N}

from any given binary sequence with N entries that sum to k. We can picture a tally

diagram t as follows. Construct a 1 × N grid and index the squares from 1 to N ,

left to right. Place a unital mark (i.e. a “1”) in each of the squares corresponding to

elements of the columnar tableau T ; all other squares are taken to have a zero and

are regarded as empty.

Figure 2.3: An element of LA(3, 4).

s s s s
s s s s
s s s s
l
l
l

l
l
l

l
l
l l

T τ = (4, 3, 3)

1
3
4

T

1 1 1
1 2 3 4 5 6 7

t = (1, 0, 1, 1, 0, 0, 0)

Tally diagrams (neé “circle diagrams”) are an innovation of Sheats [She] that are

particularly well-suited to our purposes; these will be the primary objects we use to

reference vertices of the lattices considered in this paper. The symbols r, s, t, u etc

refer to tally diagrams. For a tally diagram s, the notations T (s), τ(s), and T (s) will

henceforth have the obvious meanings. The partial order on ideals from PA(k,N − k)

can be realized using partitions, columnar tableaux, and tally diagrams as in the next

proposition. The proof is omitted as the details are routine.

Proposition 2.1 Let s, t ∈ LA(k,N−k) be tally diagrams, and let i ∈ {1, 2, . . . , N−

1}. Then

T (s) ⊆ T (t) ⇐⇒ τ(s) ≤ τ(t) in the componentwise

⇐⇒ T (s) ≥ T (t) in the reverse-componentwise order on k-tuples

⇐⇒
p∑
i=1

si ≤
p∑
i=1

ti for all p such that 1 ≤ p ≤ N.
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T (s)
i→ T (t) ⇐⇒ for some q ∈ {1, 2, . . . , k}, we have i = q − τ(t)q +N − k

and τ(s)q + 1 = τ(t)q, while τ(s)p = τ(t)p for p 6= q

⇐⇒ for some q ∈ {1, 2, . . . , k}, we have i = T (t)q = T (s)q − 1,

while T (s)p = T (t)p for p 6= q

⇐⇒ si+1 = ti = 1, si = ti+1 = 0, and sp = tp for p /∈ {i, i+ 1}.

When depicting type A tally diagrams for s and t along an edge s
i→ t, we will often

only depict the portion of each tally diagram corresponding to positions i and i+ 1;

we refer to these tally diagram positions together as the i-slots of s or t. Similarly,

the {i, i + 1}-slots of a tally diagram consist only of its positions i, i + 1, and i + 2.

With these conventions in mind, below is a depiction of an {i, i + 1}-component of

LA(k,N − k):

t
t
t

1 1

1 1

1 1

i+1

i

As stated in §1, a principal aim of our work is to connect the diamond-colored

distributive lattices studied here to certain symmetric functions associated with the

Weyl groups of types A and B. This connection is effected by studying interactions

of the edge colors in the lattices, as in the next proposition. While this proposition

is purely combinatorial in its statements and proofs, its main significance for our

purposes is that it affords an explicit connection to certain type A Weyl symmetric

functions, as we will see in §4; in §3, we reformulate the following result as theorem

about our proposed type B elementary lattices.

Proposition 2.2 The following are facts about LA(k,N − k):

(1) Let i ∈ {1, 2, . . . , N − 1}, thought of as an edge color in LA(k,N − k). In the
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depictions of i-components immediately below, we only depict the i-slots of the tally

diagram at any given vertex. Then any i-component of LA(k,N − k) is one of:

t t1 1

t
t
1

1

i

(2) Now let t = (t1, . . . , tN) be a tally diagram in LA(k,N − k). Then

wt(t) = (t1 − t2, t2 − t3, . . . , tN−1 − tN).

(3) LA(k,N − k) is AN−1-structured.

(4) We have the following well-known identity:

RGF(LA(k,N − k); q) =

 N

k


q

.

That is, the rank generating function of LA(k,N − k) is the q-binomial coefficient(
N
k

)
q
.

Proof. For part (1), note that each of the four possible i-slots can appear in one

and only one of the i-components depicted above. Now we prove part (2). Since the ith

component of the weight vector wt(t) affiliated with a tally diagram t is completely

determined by the combinatorics of the i-component containing t, then it suffices

simply to verify that ρi(t) − δi(t) = ti − ti+1 for each of the i-components depicted

in part (1) of the proposition statement. This is a trivial exercise. To prove (3), we

note that it is enough to check that for any distinct edge colors i and j and any edge

s
i→ t, we have

ρj(s)− δj(s) + aij = ρj(t)− δj(t),(1)

where aij is the (i, j)-entry of the AN−1 GCM with rows/columns indexed in concert

with the node labels of the (finitary) GCM graph AN−1 from Figure 2.1. Now, by
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(2), ρj(x)− δj(x) = xj − xj+1 for any tally diagram x. So, first suppose that i and j

are adjacent nodes in the GCM graph AN−1 with j = i+ 1, so ai,j = −1 = aj,i. Then

s = si si+1 si+2

i−→ si + 1 si+1 − 1 si+2 = t.

Now, ρi+1(s) − δi+1(s) = si+1 − si+2, while ρi+1(t) − δi+1(t) = (si+1 − 1) − si+2. So,

ρi+1(s)−δi+1(s)+ai,i+1 = ρi+1(t)−δi+1(t), thereby verifying equation (1) above when

j = i+1. A similar argument establishes (1) under the supposition j = i−1. Finally,

suppose i and j are distant nodes in the Dynkin diagram for AN−1, so |j − i| > 1.

Now, t is formed from s by changing entries in the i-slots of s. Since the j-slots

of s are distant from the i-slots, then t will have the same entries in its j-slots

as s. That is, ρj(s) − δj(s) = ρj(t) − δj(t). Since ai,j = 0 in this case, we get

ρj(s)− δj(s) + ai,j = ρj(t)− δj(t). The identity in (4) is well-known; see for example

[Proc2]. A standard (and rather pleasant) argument is to use k × (N − k) partitions

to show

RGF(LA(k,N − k); q) = qkRGF(LA(k,N − 1− k); q) + RGF(LA(k − 1, N − k); q),

which coincides with the usual recurrence of q-binomial coefficients:(
N

k

)
q

= qk
(
N − 1

k

)
q

+

(
N − 1

k − 1

)
q

.

A special family of type B lattices. We briefly present here a type B family

of lattices that are elsewhere called “minuscule lattices” (see [DDDS] and [Proc2]).

Here, we call them “type B-spin elementary lattices” because of their affiliation with

certain spin representations of the odd orthogonal Lie algebras/groups, see [KN].

For the remainder of this chapter, n is an integer with n ≥ 2. As in [DDDS], our

starting point is a staircase poset of the kind exhibited in Figure 2.4. Our formal defi-

nition utilizes coordinates. Let the set P spin
B (n) consist of the integer pairs {(x, y) | 1 ≤
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y ≤ x ≤ n for integers x and y}. Impose the partial order (x1, y1) ≤ (x2, y2) if and

only if x1 − y1 ≤ x2 − y2 with y2 ≤ y1. Let vertexcolor : P spin
B (n) −→ {1, 2, . . . , n}

be given by vertexcolor(x, y) := x. (See Figure 2.4 for an illustration of these quan-

tities.) Call the vertex-colored poset P spin
B (n) the nth type B-spin elementary poset.

Let the diamond-colored distributive lattice Lspin
B (n) := Jcolor(P

spin
B (n)) be called the

nth type B-spin elementary lattice. See Figure 2.5 for a depiction of Lspin
B (5) with two

types of coordinates assigned to its vertices. For a lively and informative discussion

of the role this family of diamond-colored distributive lattices played in solving an

Erdős problem, see R. A. Proctor’s article [Proc1], where the nth such lattice is de-

noted M(n). For a discussion of these lattices as Lie theoretic objects, see [Proc2],

[Don4].

P spin
B (5) :=

Figure 2.4: The vertex-colored poset P spin
B (n) with n = 5.

(The number to the left of each vertex is its color; to the right are the vertex coordinates.)
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It will be advantageous to work with certain coordinatizations of the order ide-

als from P spin
B (n). To do so, we designate the n different “southeast to northwest”
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diagonals of P spin
B (n) as the elements

D(B)
i (n) := {(x, y) ∈ P spin

B (n) | i = x− y + 1},

where 1 ≤ i ≤ n. Also, we denote by [1, n] the integer set {1, 2, . . . , n}. Given an order

ideal T from P spin
B (n), we obtain an n-tuple of integersT(T ) =T = (t1,t2, . . . ,tn)

wherein ti = T ∩ D(B)
i (n) for each i ∈ [1, n]. Observe that n ≥ t1 ≥ · · · ≥ tn ≥ 0

with ti > ti+1 if 1 ≤ i < n and ti 6= 0; such an n-tuple is a zero-cushioned

[1, n]-subset. Moreover, this conversion process reverses, so that any zero-cushioned

[1, n]-subset returns an order ideal from P spin
B (n). Next, we create a binary sequence

t(T) = t = (t1, . . . , tn) from a zero-cushioned [1, n]-subset by the rule that ti is 1 if

n+1−i is a member ofT and is 0 otherwise. The conversion process clearly reverses,

so that any binary n-tuple returns a zero-cushioned [1, n]-subset. See Figure 2.5 for

a depiction of these coordinates in the n = 5 case.

Within this context, we refer to binary n-tuples as type Bn-spin tally diagrams,

and we apply terminology for type AN−1 tally diagrams in the obvious ways; one

peculiarity of type B-spin tally diagrams is that, in addition to the i-slots when

1 ≤ i < n, we have an n-slot consisting only of the rightmost square/entry. We prefer

to think of type Bn-spin tally diagrams as the primary descriptor of the elements in

Lspin
B (n). For such a tally diagram x, T(x) is the associated zero-cushioned [1, n]-

subset and T (x) is the corresponding order ideal from P spin
B (n). The next proposition

says how to compare elements of Lspin
B (n) via zero-cushioned [1, n]-subsets or type

B-spin tally diagrams. The proof is omitted, as the supporting details are routine.

Proposition 2.3 Let s, t ∈ Lspin
B (n) be type Bn-spin tally diagrams, and let i ∈

{1, 2, . . . , n}. Then

T (s) ⊆ T (t) ⇐⇒ T(s) ≤T(t) in the componenwise order
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⇐⇒
p∑
i=1

si ≤
p∑
i=1

ti for all p such that 1 ≤ p ≤ n.

T (s)
i→ T (t) ⇐⇒ for some q ∈ {1, 2, . . . , n}, we have

and i = n−T(s)q, while T(s)p =T(t)p for p 6= q

⇐⇒ si+1 = ti = 1, si = ti+1 = 0, and sp = tp for p /∈ {i, i+ 1},

when i < n; and sn = 0, tn = 1, and sp = tp for p 6= n,

when i = n.
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Lspin
B (5) =

Jcolor(P
spin
B (5))

Figure 2.5: The diamond-colored distributive lattice Lspin
B (n) = Jcolor(P

spin
B (5)) with n = 5.

(At each vertex, the italicized coordinates are for the associated the zero-cushioned [1, 5]-subset;
underneath the zero-cushioned [1, 5]-subset is the type B-spin tally diagram.)
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The next result is an analog of Proposition 2.2.

Proposition 2.4 The following are facts about Lspin
B (n):

(1) Let i ∈ {1, 2, . . . , n− 1}, thought of as an edge color in Lspin
B (n). In the depictions



25

of i-components immediately below, we only depict the i-slots of the type Bn-spin

tally diagram at any given vertex. Then any i-component of Lspin
B (n) is one of:

t t1 1

t
t
1

1

i

Similarly, any n-component of Lspin
B (n) must be:

t
t1
n

Above, the only slots depicted are the n-slots of the two type Bn-spin tally diagrams,

since all their other slots are identical.

(2) Now let t = (t1, . . . , tn) be a type Bn-spin tally diagram in Lspin
B (n). Then

wt(t) = (t1 − t2, t2 − t3, . . . , tn−1 − tn, tn).

(3) Lspin
B (n) is Bn-structured.

(4) We have the following well-known identity:

RGF(Lspin

B (n); q) =
n∏
i=1

(1 + qi).

Proof. For part (1), each of the four possible i-slots can appear in one and only one

of the i-components depicted above, when 1 ≤ i < n. When i = n, there are only two

possible n-slots ( and 1 ), and these must appear together in the n-component

depicted above. Now we prove part (2). Since the ith coordinate of wt(t) is completely

determined by the combinatorics of the i-component containing t, then it suffices to

verify that ρi(t)− δi(t) is the appropriate right-hand-side quantity from the identity

claimed in (2). When 1 ≤ i < n, one can verify that ρi(t) − δi(t) = ti − ti+1 by

checking all of the cases depicted in part (1). Similarly verify that ρn(t)− δn(t) = tn

when i = n.
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To prove (3), we note that it is enough to check that for any distinct edge colors

i and j and any edge s
i→ t, we have

ρj(s)− δj(s) + aij = ρj(t)− δj(t),

where aij is the (i, j)-entry of the Bn Cartan matrix with rows/columns indexed in

concert with the node labels of the (finitary) GCM graph Bn from Figure 2.1. To

establish the preceding identity, we consider certain components of Lspin
B (n). Let

I = {1, 2, . . . , n}, let J := I \ {1}, and let J ′ := I \ {n}. Also, for any integer m ≥ 2,

let maxm (respectively, minm) denote the unique maximal (respectively, minimal)

element of Lspin
B (m). It follows from the description of covering relations in Proposition

2.3 that compJ(maxn) ∼= Lspin
B (n−1) and compJ(minn) ∼= Lspin

B (n−1), when n ≥ 3.

An easy induction argument on n allows us to conclude that ρj(s) − δj(s) + aij =

ρj(t) − δj(t) for all i, j ∈ J . Next, for each k ∈ J ′, let k := (1, . . . , 1, 0, . . . , 0), a

binary n-tuple with exactly k 1’s, all of which are consecutive at the beginning of the

sequence. It follows from the descriptions of covering relations in Proposition 2.1 and

Proposition 2.3 that compJ ′(k) ∼= LA(k, n − k). The only other J ′-components are

the singletons compJ ′(maxn) = {maxn} and compJ ′(minn) = {minn}. It follows

that ρj(s) − δj(s) + aij = ρj(t) − δj(t) for all i, j ∈ J ′. So, it only remains to be

checked that ρj(s) − δj(s) + aij = ρj(t) − δj(t) for i, j ∈ {1, n}. This follows readily

from an argument patterned after the proof of part (3) of Proposition 2.2.

The expression for the rank generating function in (4) is well-known and easily

demonstrated using a recurrence related to the decomposition of Lspin
B (n) into J-

components. Of course, it is easy to see that RGF(Lspin
B (2); q) = 1 + q+ q2 + q3 = (1 +

q)(1 + q2). Now take as an induction hypothesis the claim that RGF(Lspin
B (n−1); q) =∏n−1

i=1 (1 + qi), where the integer n ≥ 3. As we observed above compJ(maxn) ∼=

Lspin
B (n− 1) and compJ(minn) ∼= Lspin

B (n− 1). Since the rank of maxn in Lspin
B (n) is
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n more than the rank of maxn−1 in Lspin
B (n− 1), we obtain:

RGF(Lspin

B (n); q) = RGF(Lspin

B (n− 1); q) + qnRGF(Lspin

B (n− 1); q)

=
n−1∏
i=1

(1 + qi) + qn
n−1∏
i=1

(1 + qi)

=
n∏
i=1

(1 + qi).



Chapter 3

Type B analogs of the type A
elementary lattices

Our main objective in this chapter is to produce type B analogs of the type A

combinatorial objects/results of §2. To that end, the nomenclature and notation

below parallels the conventions of §2. The main result of this chapter is Theorem 3.5,

whose part (4) recapitulates a bijection that has only appeared in [Don1].

For the remainder of this chapter, k and n are fixed positive integers with 1 ≤

k ≤ n. To each such pair of integers we associate three diamond-colored distributive

lattices, denoted L̃B(k, 2n + 1 − k), LDeC
B (k, 2n + 1 − k), and LKN

B (k, 2n + 1 − k).

These Bn-structured lattices were first discerned by Donnelly, cf. [Don1]. Their direct

connection with type Bn Weyl bialternants (independent of their connection to the

representation theory of the orthogonal Lie algebras) is explored for the first time here.

(Explicit constructions of the fundamental representations of the odd orthogonal Lie

algebras on both families of type B elementary lattices are known to Donnelly and

will be explored in a future paper.) The lattice LKN
B (k, 2n+ 1− k) can be built from

certain columnar tableaux developed by Kashiwara and Nakashima [KN] in their work

on crystal graphs; this lattice has many parallels with the type C lattice LKN
C (k, 2n−k)

studied in [Don2] and [Don3]. The type B “De Concini lattice” LDeC
B (k, 2n + 1 − k)

is so named because of its many parallels with the type C lattice LDeC
C (k, 2n − k)
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of [Don2] and [Don3]; disregarding edge colors, LDeC
B (k, 2n + 1 − k) is the same as

LA(k, 2n + 1 − k). The lattice L̃B(k, 2n + 1 − k) serves as a useful generalization of

LDeC
B (k, 2n+ 1− k) and LKN

B (k, 2n+ 1− k), as the latter are full-length sublattices of

L̃B(k, 2n+ 1− k).

To begin, we consider vertex-colored posets of join irreducibles that are type B

variations of the poset PA(k, 2n + 1 − k). To the order ideals from these posets we

associate certain partition-like k-tuples, columnar tableaux, and (most usefully) tally

diagrams.

Definition 3.1 Let P̃B(k, 2n+1−k) := PA(k, 2n+1−k) as a set. Write (r, c) ≤ (s, d)

for two elements of P̃B(k, 2n+ 1− k) if one of the following holds:

(1) r = s and c ≤ d

(2) c = d, r ≤ s, and if r ≤ d− n+ k − 1, then s ≤ d− n+ k − 1.

Define the order on P̃B(k, 2n+1−k) to be the transitive closure of the above relations.

It is easy to see that we obtain a partial ordering whose covering relations are as

depicted in the first of the three example posets of Figure 3.1. Define a vertex-coloring

function by the rule

vertexcolor(r, c) :=

 r − c+ 2n+ 1− k if r − c ≤ k − n− 1

−(r − c) + k if r − c > k − n− 1

It is easy to see that we have vertexcolor(r, c) ∈ {1, 2, . . . , n} for any (r, c) ∈

P̃B(k, 2n + 1 − k). See Figure 3.1. If we momentarily disregard vertex colors, we

see that the poset P̃B(k, 2n+ 1−k) is a weak subposet of PA(k, 2n+ 1−k), since con-

dition (2) just removes some relations from PA(k, 2n+1−k). Define L̃B(k, 2n+1−k) :=

Jcolor(P̃B(k, 2n+ 1− k)). End definition

Next, we define vertex-colored posets P KN
B (k, 2n+ 1− k) and P DeC

B (k, 2n+ 1− k)

by adding relations to the poset P̃B(k, 2n + 1 − k) in a manner that is analogous to
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Figure 3.1: Examples of vertex-colored posets of join irreducibles for n = 4, k = 3
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the constructions of the posets P KN
C (k, 2n− k) and P DeC

C (k, 2n− k) from PA(k, 2n− k)

in [Don2].

Definition 3.1.KN Let P KN
B (k, 2n + 1 − k) := P (k, 2n + 1 − k) as a set. Write

(r, c) ≤ (s, d) for two elements of P KN
B (k, 2n+ 1− k) if one of the following holds:

(1) (r, c) ≤ (s, d) in the poset P̃B(k, 2n+ 1− k)

(2) r > c with (s, d) = (c, 2n+ 1− 2k + r).

Define the order on P KN
B (k, 2n + 1 − k) to be the transitive closure of the above

relations. Color the vertices of P KN
B (k, 2n + 1 − k) as in P̃B(k, 2n + 1 − k). Define

LKN
B (k, 2n+ 1− k) := Jcolor(P

KN
B (k, 2n+ 1− k)). End definition

Definition 3.1.DeC Let P DeC
B (k, 2n + 1 − k) := PA(k, 2n + 1 − k) as a poset,

but with vertices colored as in P̃B(k, 2n + 1 − k). Then set LDeC
B (k, 2n + 1 − k) :=

Jcolor(P
DeC
B (k, 2n+ 1− k)). End definition

See the following for examples.
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Example 3.1: L̃B(k, 2n+ 1− k) for k = n = 3
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Example 3.1 DeC:LDeC
B (k, 2n+ 1− k) for k = n = 3

Example 3.1 KN:LKN
B (k, 2n+ 1− k) for k = n = 3
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Next, we describe the partition-like objects, the columnar tableaux, and the tally

diagrams associated to the lattices L̃B(k, 2n+1−k), LKN
B (k, 2n+1−k), and LDeC

B (k, 2n+

1−k). For L̃B(k, 2n+1−k) and LKN
B (k, 2n+1−k) it often turns out that the k-tuple τ

we will associate to an order ideal will not quite be a partition, since P̃B(k, 2n+1−k)

was obtained from PA(k, 2n + 1 − k) by removing certain covering relations. This

latter consideration motivates the following definition.

An integer k-tuple τ = (τ1, . . . , τk) is a k × (2n + 1 − k)-quasi-partition if the

following hold:

(1) 0 ≤ τi ≤ 2n+ 1− k for 1 ≤ i ≤ k.

(2) τi ≥ τi+1 unless τi = n− k + i and τi+1 = n− k + i+ 1 for 1 ≤ i < k.

For a k × (2n + 1 − k) quasi-partition τ , let τ ′ be the (2n + 1 − k)-tuple defined by

τ ′j := max{i : j ≤ τi}, if this set is non-empty; otherwise, τ ′j := 0. Notice that τ ′ is

a (2n + 1 − k) × k partition. We say that the k × (2n + 1 − k) quasi-partition τ is

Andrews if τi − τ ′i ≤ 2n + 1− 2k for 1 ≤ i ≤ δ, where δ × δ is the size of the Durfee

square of τ ′.

For each order ideal T taken from P̃B(k, 2n+ 1− k), define the k-tuple τ = τ(T )

by τi := {(r, c) ∈ T : r = i}. It can be seen that τ is a k×(2n+1−k) quasi-partition.

Conversely, if τ is a k × (2n + 1 − k) quasi-partition, then it can be seen that the

vertex set T := {(r, c) : 1 ≤ r ≤ k, 1 ≤ c ≤ τr} constitutes an order ideal from

P̃B(k, 2n+ 1− k). For a k× (2n+ 1− k) quasi-partition τ , form the complement τ̄ by

defining τ̄i := 2n+ 1− k− τk+1−i. Then τ̄ is a k× (2n+ 1− k) quasi-partition. While

our use of τ̄ in the sequel is somewhat technical, we note that τ̄ is also quite natural

within this lattice setting. For example, it can be shown that L̃B(k, 2n + 1 − k) is

self-dual under the map τ 7→ τ̄ .

Associate a columnar tableau T = T (T ) to the k × (2n + 1 − k) quasi-partition

τ by “reversing and strictifying” τ̄ : That is, T is the integer k-tuple (T1, . . . , Tk)
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wherein Ti = 2n+ 1− k + i− τi for i ∈ {1, . . . , k}. We visualize T as a tableau with

k rows, each row containing one box, and with the box in row i (counting from the

top) containing the entry Ti. Using the fact that τ is a quasi-partition, it is easy to

see that 1 ≤ T1 ≤ · · · ≤ Tk ≤ 2n + 1, with Ti = Ti+1 ⇐⇒ Ti = Ti+1 = n + 1. This

process easily reverses, so that any columnar tableau satisfying the requirements of

the preceding sentence yields a k × (2n+ 1− k) quasi-partition.

Figure 3.2: A DeC-inadmissible and KN-inadmissible element of L̃B(4, 5).

r r r r rr r r r rr r r r rr r r r r
i i ii ii i i i i

T τ = (5, 2, 3, 0)

1
5
5
9

T

1 2 3 4
5

9 8 7 6

2
1
1

t = (1, 0, 0, 0, 2, 0, 0, 0, 1)

The tally diagram t = (t1, . . . , t2n+1) associated to the column T is given by ti = 1

if i ∈ T and ti = 0 otherwise, when i 6= n + 1. Let tn+1 = {i : Ti = n + 1}. To

picture t, draw a 2 × n grid and attach an additional square just to its right. Index

the top row of the 2 × n grid from 1 to n, left to right. Index the bottom row from

2n + 1 down to n + 2, left to right. The rightmost square is indexed n + 1. Place

tallies in the squares of the tally diagram as usual. The ith slot of t is now the pair

(ti, t2n+2−i) when 1 ≤ i ≤ n and the singleton tn+1 when i = n + 1. The other

notational conventions of §2 apply straightforwardly to these type B quasi-partitions,

columnar tableaux, and tally diagrams.

We say a tally diagram t ∈ L̃B(k, 2n + 1 − k) (or a column T (t) or partition

τ(t)) is KN-admissible (resp. DeC-admissible) ⇐⇒ T (t) is an order ideal from

P KN
B (k, 2n+1−k) (resp. P DeC

B (k, 2n+1−k)). For example, in Figure 3.2, removing (3, 3)

from T (t) makes t DeC-admissible. Adding (4, 1) to T (t) makes t KN-admissible.
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Analogizing Proposition 3.2 of [Don2], the next proposition explicitly characterizes

LKN
B (k, 2n+ 1− k) and LDeC

B (k, 2n+ 1− k) as sublattices of L̃B(k, 2n+ 1− k) in three

ways: as sublattices of tally diagrams, of columnar tableaux, and of quasi-partitions.

Proposition 3.2 Let t be a tally diagram in L̃B(k, 2n + 1 − k) with corresponding

order ideal T (t) from P̃B(k, 2n+ 1− k). Then

T (t) is an order ideal from P KN
B (k, 2n+ 1− k)

⇐⇒ τ(t) is a k × (2n+ 1− k) Andrews

quasi-partition

⇐⇒ a+k+1−b ≤ p whenever 1 ≤ p ≤ n,

T (t)a = p, and T (t)b = 2n+ 2− p

⇐⇒
∑q

p=1(tp + t2n+2−p) ≤ q, for 1 ≤ q ≤ n.

T (t) is an order ideal from P DeC
B (k, 2n+ 1− k)

⇐⇒ τ(t) is a k × (2n+ 1− k) partition

⇐⇒ T (t)p < T (t)p+1 for 1 ≤ p < k

⇐⇒ tn+1 ≤ 1.

Proof. The description of DeC-admissibility here is nothing new, since P DeC
B (k, 2n+

1 − k) is just PA(k, 2n + 1 − k) when we ignore vertex colors. The proof of the KN

case here is virtually identical to the proof of the KN case of Proposition 3.2 of

[Don2]. Follow the same steps of that proof and use the following fact as needed: if

τi < n− k + i for a k × (2n+ 1− k) quasi-partition τ , then τj ≤ τi for all j ≥ i.

Replacing 2n + 2 − i with ī when 1 ≤ i ≤ n and n + 1 with 0, our total order

on column entries becomes 1 < 2 < · · · < n < 0 < n̄ < · · · < 1̄. Then the KN-

admissibility requirement on a columnar tableau T (t) as expressed in Proposition 3.2

becomes exactly the defining condition for the odd orthogonal columns presented by

Kashiwara and Nakashima in [KN].
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Remark 3.3 Proposition 3.2 says that a tally diagram t ∈ L̃B(k, 2n + 1 − k) is

KN-admissible ⇐⇒ the total tally in the first q slots is no more than q ⇐⇒ there

are no more full slots than empty slots among the first q slots, where 1 ≤ q ≤ n.

Proposition 3.4 Let L be one of L̃B(k, 2n+1−k), LKN
B (k, 2n+1−k), or LDeC

B (k, 2n+

1− k). Let s and t be tally diagrams in L. Then:

T (s) ⊆ T (t) ⇐⇒ τ(s) ≤ τ(t) in the componentwise order on k-tuples

⇐⇒ T (s) ≥ T (t) with k-tuples ordered reverse-componentwise

⇐⇒
q∑
p=1

sp ≤
q∑
p=1

tp for all q such that 1 ≤ q ≤ 2n+ 1.

T (s)
i→ T (t) ⇐⇒ for some q ∈ {1, 2, . . . , k} we have τ(s)q+1 = τ(t)q while

τ(s)p = τ(t)p for p 6= q and

i =

 q − τ(t)q + 2n+ 1− k if q − τ(t)q ≤ k − n− 1

−(q − τ(t)q) + k if q − τ(t)q > k − n− 1

⇐⇒ for some q ∈ {1, 2, . . . , k} we have T (s)q−1 = T (t)q while

T (s)p = T (t)p for p 6= q and

i =

 q − τ(t)q + 2n+ 1− k if q − τ(t)q ≤ k − n− 1

−(q − τ(t)q) + k if q − τ(t)q > k − n− 1

⇐⇒ si+1 = ti = 1, si = ti+1 = 0, and sp = tp for p /∈ {i, i+ 1}; or

s2n+2−i = t2n+1−i = 1, s2n+1−i = t2n+2−i = 0, and

sp = tp for p /∈ {2n+ 1− i, 2n+ 2− i}.

Proof. When L = L̃B(k, 2n + 1 − k), it is straightforward to check that the partial

ordering of ideals is equivalent to the stated partial orderings of quasi-partitions,

columnar tableaux, and tally diagrams. Edge colors in L̃B(k, 2n+ 1− k) are derived

from the coloring of vertices in P̃B(k, 2n+ 1− k) (cf. Definition 3.1). Quasi-partitions

inherit this edge-coloring in the obvious way (compare the rule for color i in the

theorem statement with the definition of the vertex-coloring function in Definition

3.1). Proof details for the remaining claims about L̃B(k, 2n + 1 − k) in Proposition
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3.4 are routine. Since P̃B(k, 2n + 1 − k) is a weak subposet of P KN
B (k, 2n + 1 − k)

and P DeC
B (k, 2n + 1 − k), it follows that LKN

B (k, 2n + 1 − k) and LDeC
B (k, 2n + 1 − k)

are full-length sublattices of L̃B(k, 2n+ 1− k), so the claims of the proposition apply

within these sublattices as well.

Theorem 3.5 Let L be any one of L̃B(k, 2n+1−k), LKN
B (k, 2n+1−k), or LDeC

B (k, 2n+

1− k). Then:

(1) Let i ∈ {1, 2, . . . , n − 1}, thought of as an edge color in L. In the depictions of

i-components immediately below, we only depict the i-slots of the tally diagram at

any given vertex. Then any i-component of L is one of:

1 1
1 1 1 1

1 1

i

1

1

i

1
1 1

1
1

1

i

1

1

i

1
11

1
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� In LKN
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1 is KN-inadmissible
i

i

1
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1
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1
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1
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1
1

1
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Now let i = n. In the depictions of n-components immediately below, we only depict

the n-slots of the tally diagram at any given vertex. Then any n-component of L is

one of:

1
1
1

n

n

1

1

1

� In LDeC
B (k, 2n+ 1− k) only
J
J
J
J
J
J]

n

n

1
1

1
1

1 1

n n

nn

1 p

1
1
q r

1
p

The four-element n-component immediately above can only occur in

L̃B(k, 2n+ 1− k) or LKN
B (k, 2n+ 1− k).

In this particular component, we have q = p− 1 and r = p+ 1.

(2) Now let t = (t1, . . . , t2n+1) be an element of L. Then

wt(t) = (t1 − t2 + t2n − t2n+1, . . . ,ti − ti+1 + t2n+1−i − t2n+2−i, . . .

. . . ,tn−1 − tn + tn+2 − tn+3,2tn − 2tn+2)

(3) L is Bn-structured.

(4) There exists a weight-preserving bijection φ : LDeC
B (k, 2n+ 1− k) −→ LKN

B (k, 2n+

1− k), so that

WGF(LDeC

B (k, 2n+ 1− k); z1, z2, . . . , zn) = WGF(LKN

B (k, 2n+ 1− k); z1, z2, . . . , zn).

Moreover, RGF(LDeC
B (k, 2n+ 1− k); q) = RGF(LKN

B (k, 2n+ 1− k); q) =
(

2n+1
k

)
q
.
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Proof. For part (1), each of the sixteen possible i-slots can appear in one and only

one of the i-components depicted above, when 1 ≤ i < n. Note that an i-component

that is a length two chain can only occur when L = LKN
B (k, 2n + 1 − k) and 1 0

1 0

is KN-inadmissible. Now consider i = n. There are exactly eight possibilities for the

n-slots of any tally diagram in LDeC
B (k, 2n + 1 − k), and these are represented in the

two singletons and the two three-element color n chains depicted above. The typical

tally diagram from L̃B(k, 2n + 1 − k) or LKN
B (k, 2n + 1 − k) has n-slots of the form

a

b
p , where p is a nonnegative integer and a, b ∈ {0, 1}. If p ≥ 2 or if a = 1 = b

of if p = 1 with exactly one of a or b nonzero, then we must be in the four-element

n-component depicted above. If p = 1 and a = 0 = b or if p = 0 with exactly one of

a or b nonzero, then we must be in the leftmost three-element color n chain depicted

above. If p = 0 and a = 0 = b, then we must be in the leftmost of the two singletons

depicted above. This exhausts all possibilities for a, b, and p, and thus completes our

analysis of the i = n case.

Now we prove part (2). Since the ith coordinate of wt(t) is completely determined

by the combinatorics of the i-component containing t, then it suffices to verify that

ρi(t)− δi(t) is the appropriate right-hand-side quantity from the identity claimed in

(2). This can be done easily by checking the cases depicted in part (1).

To prove (3), we note that it is enough to check that for any distinct edge colors

i and j and any edge s
i→ t, we have

ρj(s)− δj(s) + aij = ρj(t)− δj(t),(2)

where aij is the (i, j)-entry of the Bn Cartan matriix with rows/columns indexed in

concert with the node labels of the (finitary) GCM graph Bn from Figure 2.1. Now,

by part (2) of the theorem, for any tally diagram x we have ρj(x)−δj(x) = xj−xj+1 +

x2n+1−j − x2n+2−j for any j ∈ {1, 2, . . . , n− 1} and ρn(x)− δn(x) = 2xn − 2xn+2.
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Begin with 1 ≤ i < n, and suppose i and j are adjacent nodes in the GCM graph

Bn with j = i+1. Moreover, assume j < n as well, so ai,j = −1 = aj,i. Then our edge

s
i→ t is one of the following, where we only depict the i-slots and the (i+ 1)-slots for

each of s and t:

s =
si si+1 si+2

s2n+2−i s2n+1−i s2n−i

i−→ si + 1 si+1 − 1 si+2

s2n+2−i s2n+1−i s2n−i

= t

or

s =
si si+1 si+2

s2n+2−i s2n+1−i s2n−i

i−→ si si+1 si+2

s2n+2−i − 1 s2n+1−i + 1 s2n−i

= t.

In the former case, we have ρi+1(s) − δi+1(s) = si+1 − si+2 + s2n−i − s2n+1−i and

ρi+1(t) − δi+1(t) = (si+1 − 1) − si+2 + s2n−i − s2n+1−i. In the latter case, we have

ρi+1(s) − δi+1(s) = si+1 − si+2 + s2n−i − s2n+1−i and ρi+1(t) − δi+1(t) = si+1 − si+2 +

s2n−i− (s2n+1−i + 1). Either way, ρi+1(s)− δi+1(s) + ai,i+1 = ρi+1(t)− δi+1(t), thereby

verifying identity (2) above when j = i+ 1. A similar argument establishes (2) under

the supposition j = i− 1.

Suppose now that i = n− 1 and j = n, so ai,j = an−1,n = −2 and aj,i = an,n−1 =

−1. Then our edge s
i→ t is one of the following, where we only depict the (n−1)-slots

and the n-slots for each of s and t:

s =
sn−1 sn

sn+3 sn+2

sn+1

i−→ sn−1 + 1 sn − 1

sn+3 sn+2

sn+1 = t

or

s =
sn−1 sn

sn+3 sn+2

sn+1

i−→ sn−1 sn

sn+3 − 1 sn+2 + 1
sn+1 = t.

In the former case, we have ρn(s) − δn(s) = 2sn − 2sn+2 and ρn(t) − δn(t) = 2(sn −

1)− 2sn+2. In the latter case, we have ρn(s)− δn(s) = 2sn− 2sn+2 and ρn(t)− δn(t) =
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2sn − 2(sn+2 + 1). Either way, ρn(s) − δn(s) + an−1,n = ρn(t) − δn(t). A similar

argument establishes (2) under the supposition j = n− 1 and i = n.

Finally, suppose i and j are distant nodes in the GCM graph for Bn, so |j− i| > 1.

Then ai,j = 0 = aj,i Now, t is formed from s by changing entries in the i-slots of s.

Since the j-slots of s are distant from the i-slots, then t will have the exact same same

j-slots as s. Then, ρj(s)− δj(s)+aij = ρj(s)− δj(s)+0 = ρj(s)− δj(s) = ρj(t)− δj(t),

completing the proof of (3).

For (4), it suffices to produce the claimed weight-preserving bijection, since the

remaining claims of (4) will follow readily as consequences. To this latter point,

note that equality of the weight generating functions for LDeC
B (k, 2n + 1 − k) and

LKN
B (k, 2n + 1 − k) will be an automatic consequence of the existence of the weight-

preserving bijection. Since each lattice is Bn-structured by part (3) above, it follows

from Lemma 3.4.2 of [Don7] that if two elements from one of these lattices have the

same weight, then the elements have the same rank. Therefore,LDeC
B (k, 2n+1−k) and

LKN
B (k, 2n + 1 − k) will have the same rank generating function. Now, LDeC

B (k, 2n +

1 − k) is isomorphic to LA(k, 2n + 1 − k), if edge colors are disregarded. Therefore

RGF(LDeC
B (k, 2n+ 1− k); q) =

(
2n+1
k

)
q
, so it will follow from the existence of a weight-

preserving bijection that RGF(LKN
B (k, 2n+ 1− k); q) =

(
2n+1
k

)
q

also.

The weight-preserving bijection we construct next will match tally diagrams in

corresponding “weight spaces” (to be defined shortly) of LDeC
B (k, 2n + 1 − k) and

LKN
B (k, 2n + 1 − k) respectively. But first an observation: For any given integer n-

tuple µ, there exists a tally diagram t ∈ L̃B(k, 2n + 1 − k) with wt(t) = µ if and

only if there exist tally diagrams t′ ∈ LDeC
B (k, 2n+ 1− k) and t′′ ∈ LKN

B (k, 2n+ 1− k)

such that wt(t′) = wt(t′′) = µ. Fix such an integer n-tuple µ. The associated weight
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spaces of LDeC
B (k, 2n+ 1− k) and LKN

B (k, 2n+ 1− k) are defined as follows:

WeightDeC

B (n, k;µ) := {x ∈ LDeC

B (k, 2n+ 1− k) |wt(x) = µ}

WeightKN

B (n, k;µ) := {x ∈ LKN

B (k, 2n+ 1− k) |wt(x) = µ}

We will use a so-called reflection argument (often attributed to André cf. [Com])

to give a bijection from WeightDeC

B (n, k;µ) to WeightKN

B (n, k;µ). This requires that

we identify weight space elements with paths in the coordinate plane. To this end,

suppose µ has m zeros. Then tally diagrams in L̃B(k, 2n + 1 − k) with weight µ

have exactly m full and empty slots, with at most j := bk−n+m
2
c ≤ bm

2
c full slots.

Moreover, the positions of the full/empty slots of any two such tally diagrams s and

t are the same (although the number of full slots in s need not be the same as the

number of full slots in t). We view a sequence of m full and empty slots as a path

of unit steps in the coordinate plane as follows: Let an empty slot correspond to a

unit step in the North direction and a full slot as a unit step East. Then the tally

diagrams in WeightKN

B (n, k;µ) can be identified with the set of all paths that start

at (0, 0), stay weakly above the line y = x (i.e. such paths can touch but not cross

y = x), and terminate at some point (t,m− t), where 0 ≤ t ≤ j; denote this latter set

of paths by PathKN

B (n, k;µ). On the other hand, tally diagrams in WeightDeC

B (n, k;µ)

have exactly j full slots, and so these correspond to the set of all paths from (0, 0) to

(j,m− j), a set we denote by PathDeC

B (n, k;µ). We will therefore match the paths in

PathDeC

B (n, k;µ) to the paths in PathKN

B (n, k;µ). Now, those paths in PathDeC

B (n, k;µ)

that stay weakly above y = x correspond exactly to those paths in PathKN

B (n, k;µ)

which have exactly j steps East. Now apply the André reflection principle to those

paths in PathDeC

B (n, k;µ) that do not stay weakly above the line y = x: If (p + 1, p)

is the first point below y = x that such a path reaches, then swap all the preceding

East and North moves to get a path from from (1,−1) to (j,m − j). This process
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yields all paths from (1,−1) to (j,m − j). Translate these north one unit and west

one unit to get all paths from (0, 0) to (j − 1,m+ 1− j). Amongst these, the paths

that stay weakly above y = x correspond to the paths PathKN

B (n, k;µ) with exactly

j− 1 steps East. Continue this procedure to obtain all paths in PathKN

B (n, k;µ). This

bijection of paths from PathDeC

B (n, k;µ) to PathDeC

B (n, k;µ) yields the desired bijection

from WeightDeC

B (n, k;µ) to WeightKN

B (n, k;µ).



Chapter 4

A brief discourse on Weyl group
symmetric functions

For a self-contained account of the foundations of Weyl symmetric function the-

ory and Weyl bialternants, see [Don7], a tutorial that aims to synthesize and unify

standard content from various classical sources (e.g. [FH], [Hum]). Here, we make

note of some key notions. Our starting point is a finite rank n root system Φ residing

in an n-dimensional Euclidean space E with inner product 〈·, ·〉. The related objects

— coroots α∨ := 1
〈α,α〉α; simple roots {αi}; Cartan matrix AΦ := (aij)i,j∈{1,2,...,n} with

aij := 〈αi, α∨j 〉; sets of positive and negative roots Φ+ and Φ− respectively; funda-

mental weights {ωi} dual to the simple coroots {α∨j } via the relations 〈ωi, α∨j 〉 = δij;

the lattice of weights Λ := {µ =
∑n

i=1 miωi |mi ∈ Z}; dominant weights Λ+ = {µ =∑n
i=1 miωi |mi ∈ Z with mi ≥ 0}; finite Weyl group W with generators {si}i∈{1,2,...,n}

and relations (sisj)
mij = ε if mij = k ∈ {1, 2, 3, 4, 6} with k as the smallest positive

integer such that aijaji = 4 cos2(π/k); action of W on Λ given by si.µ = µ−〈µ, α∨i 〉αi

for each i ∈ {1, . . . , n} and each µ ∈ Λ; special elements % :=
∑
ωi = 1

2

∑
α∈Φ+ α and

%∨ = 1
2

∑
α∈Φ+ α∨; etc — are obtained as usual. The (finite) irreducible root systems

are classified by the finitary GCM graphs of Figure 2.1.

For an extended example, including explicit computations and illustrations of most

all of the notions of the preceding paragraph, see Chapter 2 subsection 2.18 (p.48)
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of [Gil]. However, a reader can safely ignore the Weyl group / Lie representation

theoretic gadgetry here if their interests are mainly combinatorial. In this case, such

a reader can think of the main combinatorial goal as that of realizing the conclusions

of Proposition 4.4 for our type B elementary lattices by establishing the combinatorial

criteria of Theorem 4.1.

The group ring Z[Λ] has as a Z-basis the formal exponentials {eµ}µ∈Λ. The Weyl

group W acts on Z[Λ] via si.e
µ := esi.µ. From here on, we identify each eωi as the

indeterminate zi. Then for µ =
∑
miωi ∈ Λ, the quantity eµ = em1ω1+m2ω2+···+mnωn

is the monomial zm1
1 zm2

2 · · ·zmnn . That is, each χ ∈ Z[Λ] is a Laurent polynomial

in the variables z1, z2, . . . , zn. The ring of Weyl symmetric functions Z[Λ]W is the

subring of W -invariants in Z[Λ]. Each χ ∈ Z[Λ]W is a Weyl symmetric function; at

times for clarity we use “Φ” as a modifier, as in “type Φ Weyl symmetric function”

or “Φ-symmetric function.” The subgroup of W -alternants Z[Λ]alt consists of those

group ring elements ϕ for which σ.ϕ = det(σ)ϕ for all Weyl group elements σ. Define

a mapping A : Z[Λ] −→ Z[Λ]alt by the rule A(ϕ) :=
∑

σ∈W det(σ)σ.ϕ. The Weyl

denominator is the alternant A(e%), which factors as

A(e%) = e%
( ∏
α∈Φ+

(1− e−α)
)

=
∏
α∈Φ+

(eα/2 − e−α/2) = e−%
( ∏
α∈Φ+

(eα − 1)
)
.

The following is a sort of fundamental theorem for Weyl symmetric functions: For any

dominant weight λ, there exists a unique χΦ
λ
∈ Z[Λ] for which A(e%)χΦ

λ
= A(eλ+%),

and in fact the χΦ
λ

’s comprise a Z-basis for Z[Λ]W . Each χΦ
λ

is a Weyl bialternant∗.

∗Let g(Φ) be the finite-dimensional semisimple complex Lie algebra affiliated with Φ by, say, a

construction using generators and relations. Each finite-dimensional irreducible representation V of

g(Φ) is uniquely identified by the dominant weight λ of a highest weight basis vector. The Weyl

character formula connects V with χΦ
λ

via the formula

∑
µ∈Λ

Vµ = χΦ
λ
,
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The symmetric functions {χAN−1
ωk }k∈{1,...,N−1} are (after a change of variables) the

classical elementary symmetric functions. By analogy, for our generic (finite) root sys-

tem Φ, we say the elementary Φ-symmetric functions are {χΦ
ωk
}k∈{1,...,n} In the above

language, our goal is to find poset models for the elementary Bn-symmetric functions

{χBn
ωk
}k∈{1,...,n−1} together with what we call the almost-elementary Bn-symmetric func-

tion χBn
2ωn . From here on, let c : {1, 2, . . . , n} −→ {1, 2} be the function for which

c(k) = 1 + bk
n
c.

Next we define precisely what we mean by a “poset model” for a Weyl bialternant

χXn
λ , where X ∈ {A,B,C,D,E,F,G}. If R is Xn-structured and if it weight generating

function WGF(R; z1, z2, . . . , zn) = χXn
λ , we say R is a splitting poset for χXn

λ . If R is

a modular (respectively distributive) lattice, then call R a splitting modular (resp.

distributive) lattice. Expressed in this terminology, the aim of this paper is to show

that for integers k and n with 1 ≤ k ≤ n, we have

WGF

(
LDeC
B (k, 2n+ 1− k); z1, z2, . . . , zn

)
= WGF

(
LKN
B (k, 2n+ 1− k); z1, z2, . . . , zn

)
= χBn

c(k)ωk
,

so that each of the Bn-structured lattices LDeC
B (k, 2n+ 1− k) and LKN

B (k, 2n+ 1− k)

is a splitting distributive lattice for the kth elementary Bn-symmetric function (when

k < n) and the almost-elementary Bn-symmetric function (when k = n).

With the remainder of this chapter, we record criteria developed by Donnelly

in [Don7] that will be applied in §5 to establish the preceding splitting distributive

lattice claims, and we explore some consequences. Towards the end of this chapter,

we demonstrate these ideas for the elementary AN−1-symmetric functions and the

elementary Bn-symmetric function χBn
ωn .

where Vµ is the subspace of V consisting of all weight vectors with weight µ. When λ = ωk, the

irreducible representation is the kth fundamental representation, and the weight ωk is a fundamental

weight.
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Before we state our next theorem, we need some definitions/notation. In a product

C := C1 × · · · × Cp of chains C1, . . . , Cp, a subface is a set Sq = {(x1,x2, . . . ,xp) ∈

C |xq is not maximal in Cq}, for some fixed q ∈ {1, . . . , p}. If a poset P is isomorphic

to C via some isomorphism ϕ : P −→ C, then a ϕ-subface of P is a set S = ϕ−1(Sq)

for some q ∈ {1, . . . , p}; if the isomorphism ϕ is understood, we simply call S a

subface of P . Now suppose R is a ranked poset whose edges are colored by the

set {1, 2, . . . , n}, and say M is a vertex subset of R. A vertex-coloring function

κ : R \M −→ {1, 2, . . . , n} is subface-friendly if, for all x ∈ R \M, the set

{
y ∈ compκ(x)(x) y 6∈ M and κ(y) = κ(x)

}
is a subface of compκ(x)(x).

Theorem 4.1 Let Xn be an irreducible rank n root system, where X is one of

{A,B,C,D,E,F,G}. Suppose R is an Xn-structured poset with a unique maximal

element m, so λ := wt(m) is dominant in Λ. Further suppose that for each i ∈

{1, 2, . . . , n}, each i-component of R is isomorphic to a product of chains. Finally,

suppose there exists a subface-friendly vertex-coloring function κ : R \ {m} −→

{1, 2, . . . , n}. Then R is a splitting poset for χXn
λ , i.e.

WGF
(
R; z1, z2, . . . , zn

)
= χXn

λ .

The following simple corollary provides criteria that simplify the application of

the preceding theorem in some circumstances.

Corollary 4.2 With Xn as in Theorem 4.1, suppose R is an Xn-structured poset

with a unique maximal element m, so λ := wt(m) is dominant in Λ. Suppose that

for each i ∈ {1, 2, . . . , n}, each i-component of R is a chain with either one or two

elements. Then R is a splitting poset for χXn
λ .
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Proof. Let x ∈ R \ {m}. Then {y ∈ R |x→ y} is nonempty. Choose some y(x)

with x→ y(x) and let i be the color of this edge. Set κ(x) := i. Clearly the set

{
y ∈ compi(x) y 6= m and κ(y) = i

}
= {x}

is a subface of compi(x) = {x i→ y(x)}. Then the vertex-coloring function κ :

R \ {m} −→ {1, 2, . . . , n} is subface-friendly. Now apply Theorem 4.1.

The next result showcases some pleasant enumerative and combinatorial-structur-

al aspects of any connected splitting poset for a given Weyl bialternant. It is a

simple poset-theoretic interpretation of some well-known Lie representation / Weyl

symmetric function theoretic quantities; see Proposition 4.7 of [Don7] for a proof that

utilizes the language and notation of this paper. Unimodality of the rank generating

function is the only aspect of this result that depends upon the representation theory

of semisimple Lie algebras, see for example Corollary 2.22 of [Don7].

Proposition 4.3 Let Xn be an irreducible rank n root system, where X is one of

{A,B,C,D,E,F,G}. Let λ be dominant in Λ, and suppose R is a connected splitting

poset for χXn
λ . Then R has a unique rank function. Moreover, R is rank symmetric

and rank unimodal, and its rank generating function is a polynomial that can be

written as a quotient of products as follows, where the quantities 〈λ + %, α∨〉 and

〈%, α∨〉 are positive integers for each α ∈ Φ+:

RGF(R; q) =

∏
α∈Φ+

(
1− q〈λ+%,α∨〉

)
∏
α∈Φ+

(
1− q〈%,α∨〉

) .

We therefore obtain the following formulas for CARD(R) and LENGTH(R):

CARD(R) =

∏
α∈Φ+

〈λ+ %, α∨〉∏
α∈Φ+

〈%, α∨〉
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and LENGTH(R) =
∑
α∈Φ+

〈λ+ %, α∨〉 = 2〈λ, %∨〉.

For the the elementary AN−1-symmetric functions and the elementary/almost-

elementary Bn-symmetric functions, the data of Proposition 4.3 specializes as follows.

This well-known data was obtained by employing methods appearing in Chapters 2

and 4 of [Gil]; see also Proposition D.23 of [Don7].

Proposition 4.4

Type AN−1 For integers k and N with 1 ≤ k ≤ N −1, let R be a connected splitting

poset for χ
AN−1
ωk . Then R is rank symmetric and rank unimodal. Moreover

RGF(R; q) =

(
N

k

)
q

, CARD(R) =

(
N

k

)
, and LENGTH(R) = k(N − k).

Type Bn For integers k and n with n ≥ 2 and 1 ≤ k ≤ n, let R be any connected

splitting poset for χBn

c(k)ωk
. Then R is rank symmetric and rank unimodal. Moreover

RGF(R; q) =

(
2n+ 1

k

)
q

, CARD(R) =

(
2n+ 1

k

)
, and LENGTH(R) = k(2n+ 1− k).

Now let R be a connected splitting poset for χBn
ωn . Then R is rank symmetric and

rank unimodal. Moreover

RGF(R; q) =
n∏
i=1

(1 + qi), CARD(R) = 2n, and LENGTH(R) = n(n+ 1)/2.

The next result is known, but now follows easily from Corollary 4.2 and Proposi-

tion 4.4 together with Proposition 2.2 and Proposition 2.4.

Theorem 4.5 Let k, n, and N be integers, with n ≥ 2, N ≥ 2, and 1 ≤ k ≤

N − 1. Then the diamond-colored lattice LA(k,N − k) is a splitting distributive

lattice for χ
AN−1
ωk . So, LA(k,N − k) is rank symmetric and rank unimodal, and

RGF(LA(k,N − k); q) =

(
N

k

)
q

. Also, the diamond-colored lattice Lspin
B (n) is a split-

ting distributive lattice for χBn
ωn . Thus, Lspin

B (n) is rank symmetric and rank unimodal,

and RGF(Lspin

B (n); q) =
n∏
i=1

(1 + qi).
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Proof. By Proposition 2.2, LA(k,N −k) is AN−1-structured, and any i-component

(1 ≤ i ≤ N − 1) is a one- or two-element chain. Observe that the unique maximal

element has weight ωk. So, by Corollary 4.2, LA(k,N − k) is a splitting distributive

lattice for χ
AN−1
ωk . The other claims about LA(k,N−k) in the theorem statement follow

from Proposition 4.4. In an entirely similar way, the claims made about Lspin
B (n) follow

from Proposition 2.4, Corollary 4.2, and Proposition 4.4.

In the next chapter, we use Theorem 4.1 together with Theorem 3.5 to establish

that the type B elementary lattices LDeC
B (k, 2n + 1 − k) and LKN

B (k, 2n + 1 − k) are

splitting distributive lattices for the Weyl bialternant χBn

c(k)ωk
.



Chapter 5

Type B elementary lattices as
splitting posets

Our main goal in this chapter is to use the vertex-coloring method prescribed by

Theorem 4.1 to prove the following theorem:

Theorem 5.1 Fix integers n and k with n ≥ 2 and 1 ≤ k ≤ n. Let L be one of

LDeC
B (k, 2n+ 1− k) or LKN

B (k, 2n+ 1− k). Then L is a splitting distributive lattice for

the the kth type Bn elementary/almost elementary symmetric function. In particular,

WGF(L; z1, ..., zn) = χBn

c(k)ωk
.

Before presenting the proof to the above theorem, we record the following corollary.

Now, LDeC
B (k, 2n + 1 − k) is the same distributive lattice as LA(k, 2n + 1 − k) when

we ignore edge colors. Thus, the claims made about LDeC
B (k, 2n + 1 − k) in the next

corollary can be proven directly (see [O], [Proc1], [Zeil]) and without reference to

Weyl symmetric function theory; the same claims about LKN
B (k, 2n + 1 − k) follow

from Theorem 3.5.4. However, in view of Theorem 5.1 above, the corollary follows

immediately from Proposition 4.4.

Corollary 5.2 Keep the hypotheses of Theorem 5.1. Then L is rank symmetric and

rank unimodal, and RGF(LDeC
B (k, 2n+1−k); q) = RGF(LKN

B (k, 2n+1−k); q) =
(

2n+1
k

)
q
.
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Proof of Theorem 5.1. Our proof only addresses LDeC
B (k, 2n + 1 − k). That

LKN
B (k, 2n + 1 − k) is a splitting distributive lattice for χBn

c(k)ωk
then follows from

Theorem 3.5 parts (3) and (4). In order to apply Theorem 4.1 and conclude that

L := LDeC
B (k, 2n + 1 − k) is a splitting distributive lattice for χBn

c(k)ωk
, we must verify

that L possesses three combinatorial properties stated in that theorem as sufficient

conditions. First, we must verify that the i-components of L are isomorphic to prod-

ucts of chains. This can be done by inspecting the classification of i-components in

Theorem 3.5 part (1). Second, we must verify that L is Bn-structured. But this was

done in Theorem 3.5 part (3). Third, we must verify that L has a subface-friendly

vertex-coloring function

κ : L \ {maxn,k} → {1, 2, ..., n},

with maxn,k as the unique maximal element of L and where we abuse notation by

identifying L with its vertex set V(L). We will prove the existence of such a function

by induction on n. We note that the recursive process used to produce this function

is constructive.

To set up the argument, we need some definitions and notation. For integers a

and b, let [a, b] denote the set of integers {a, a+ 1, . . . , b− 1, b} when a ≤ b; otherwise

[a, b] := ∅. A Bn−1-component of L is just a [2, n]-component of L, and a Bn−1-maximal

element is the unique maximal element of a given Bn−1-component. We can study

Bn−1-components and their associated Bn−1-maximal elements using tally diagrams

and by focussing in particular on the movement of tallies between slots 1 and 2. The

next observation is crucial for our induction argument. Observe that, for n ≥ 3,

the Bn−1-components of LDeC
B (k, 2n + 1 − k) are type Bn−1 De Concini elementary

lattices, in the following sense: If such a component X with maximal element x is

not a singleton, then X is naturally isomorphic to some LDeC
B (j, 2n − 1 − j) (with
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1 ≤ j ≤ n − 1) where the colors [2, n] of X are matched to the colors [1, n − 1] of

LDeC
B (j, 2n−1− j) via the set mapping σn : [2, n] −→ [1, n−1] wherein σn(x) = x−1.

We denote the preceding isomorphism by φx : X −→ LDeC
B (j, 2n− 1− j).

For the basis step of our induction argument, we take n to be 2 and produce

subface-friendly vertex-coloring functions for the following diamond-colored distribu-

tive lattices:
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In the above pictures, the circled number near any given vertex represents the color

of that vertex. By inspection we see that these vertex-coloring functions are subface-

friendly.

For the induction step, we take an integer m with 2 ≤ m < n and assume that

for any given integer j such that 1 ≤ j ≤ m, there is a subface-friendly vertex-

coloring function κm,j : LDeC
B (j, 2m+ 1− j) \ {maxm,j} −→ [1,m]. We will produce a

subface-friendly vertex-coloring function κm+1,j : LDeC
B (j, 2m+3−j)\{maxm+1,j} −→

{1,m+ 1} whenever j is an integer with 1 ≤ j ≤ m+ 1. To do so, we consider cases:

j = 1, j = 2, 3 ≤ j ≤ m, and j = m+ 1.

When j = 1, there are exactly three Bm-maximal elements in LDeC
B (1, 2m+ 2):
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a =
0 1 · · · 0 0

0 0 · · · 0 0
0 , b =

0 0 · · · 0 0

1 0 · · · 0 0
0 , and c =

1 0 · · · 0 0

0 0 · · · 0 0
0 .

Tally diagram c is the unique maximal element maxm+1,1 of LDeC
B (1, 2m + 2), and

its Bm-component is a singleton vertex; b is the unique minimal element, and its

Bm-component is also a singleton. Tally diagram a is the maximal element in a Bm-

component isomorphic to LDeC
B (1, 2m) via the isomorphism φa in conjunction with the

edge-color-matching function σm+1 : [2,m+1] −→ [1,m]. We define a vertex-coloring

function κm+1,1 : LDeC
B (1, 2m) \ {maxm+1,1} −→ [1,m+ 1] as follows:

κm+1,1(x) =

 1 if x = a or x = b

σ−1
m+1

(
(κm,1 ◦ φa)(x)

)
if x ∈ comp[2,m+1](a) and x 6= a

Now, by our induction hypothesis, κm,1 is subface-friendly. So to prove that κm+1,1

is subface-friendly, it suffices to check that {y ∈ comp1(x) |κm+1,1(y) = 1} is a

subface of comp1(x) for x ∈ {a, b}. But this latter condition is trivial since, for each

x ∈ {a, b}, we see that comp1(x) is a two-element chain, x is its minimal element,

and κm+1,1(y) > 1 if y ∈ comp1(x) \ {x} and y 6= maxm+1,1.

Next assume j = 2. In this case, there are exactly four Bm-maximal elements in

LDeC
B (2, 2m+ 1):

a =
0 1 1 · · · 0 0

0 0 0 · · · 0 0
0 , b =

1 1 0 · · · 0 0

0 0 0 · · · 0 0
0 ,

c =
0 1 0 · · · 0 0

1 0 0 · · · 0 0
0 , and d =

1 0 0 · · · 0 0

1 0 0 · · · 0 0
0 .

The Bm-component of tally diagram a is isomorphic to LDeC
B (2, 2m − 1). The Bm-

components of tally diagrams b and c are isomorphic to LDeC
B (1, 2m), and b is the

unique maximal element maxm+1,2 of LDeC
B (2, 2m + 1). The Bm-component of tally
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diagram d is a singleton. Now define a vertex-coloring function κm+1,2 : LDeC
B (2, 2m+

1) \ {maxm+1,2} −→ [1,m+ 1] as follows:

κm+1,2(x) =



1 if x ∈ {a, c, d}

σ−1
m+1

(
(κm,2 ◦ φa)(x)

)
if x ∈ comp[2,m+1](a) and x 6= a

σ−1
m+1

(
(κm,1 ◦ φb)(x)

)
if x ∈ comp[2,m+1](b) and x 6= b

σ−1
m+1

(
(κm,1 ◦ φc)(x)

)
if x ∈ comp[2,m+1](c) and x 6= c

As in the j = 1 case, we know by our induction hypothesis that κm,1 and κm,2

are subface-friendly. So to prove that κm+1,2 is subface-friendly, it suffices to check

that {y ∈ comp1(x) |κm+1,2(y) = 1} is a subface of comp1(x) for x ∈ {a, c, d}.

For x = a, this latter condition is trivial since comp1(a) is a two-element chain,

a is its minimal element, and κm+1,2(y) > 1 if y ∈ comp1(a) \ {a}. Now note

that comp1(c) = comp1(d) is a four-element diamond for which κm+1,2(y) > 1 if

y ∈ comp1(c) \ {c, d}. So, {y ∈ comp1(x) |κm+1,2(y) = 1} = {c, d} is a subface of

comp1(x) whenever x ∈ {c, d}.

Now assume 3 ≤ j ≤ m. As in the preceding case, there are exactly four Bm-

maximal elements in LDeC
B (j, 2m+ 3− j):

a =
0 1 · · · 0 0

0 0 · · · 0 0
0 , b =

1 1 · · · 0 0

0 0 · · · 0 0
0 ,

c =
0 1 · · · 0 0

1 0 · · · 0 0
0 , and d =

1 1 · · · 0 0

1 0 · · · 0 0
0 .

The ellipses on the top row of each of the above tally diagrams indicate a sequence

of consecutive 1’s beginning in position 3; the bottom row ellipses indicate empty

boxes. The Bm-component of tally diagram a is isomorphic to LDeC
B (j, 2m + 1 − j).

The Bm-components of tally diagrams b and c are isomorphic to LDeC
B (j−1, 2m+2−j),

and b = maxm+1,j is the unique maximal element of LDeC
B (j, 2m + 3 − j). The Bm-

component of tally diagram d is isomorphic to LDeC
B (j − 2, 2m + 3 − j). A subtle
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difference between the preceding case and this one is that comp1(c) is a diamond

consisting of the following four elements, none of which is d:

c =
0 1 · · · 0 0

1 0 · · · 0 0
0 , c′ =

0 1 · · · 0 0

0 1 · · · 0 0
0 ,

c′′ =
1 0 · · · 0 0

1 0 · · · 0 0
0 , and c′′′ =

1 0 · · · 0 0

0 1 · · · 0 0
0 .

We have c′ ∈ comp1(a), c′′ ∈ comp1(d), and c′′′ ∈ comp1(b). As in previous cases,

we intend to assign color 1 to the vertex c, but subface-friendliness will require exactly

one of the vertices c′ or c′′ to also be assigned color 1. We will use vertex c′′ for this

purpose. It is important to note that c′′ has positive depth in compi(c
′′) if and only

if i ∈ {1, 2}; moreover, comp2(c′′) is a two-element chain with c′′ as its minimal

element. Thus, if we assign color 1 to the vertex c′′, then this choice will not interfere

with the subface-friendliness of the vertex-coloring function that comp1(d) inherits

when the induction hypothesis is applied.

So, define a vertex-coloring function κm+1,j : LDeC
B (j, 2m+3− j)\{maxm+1,j} −→

[1,m+ 1] as follows:

κm+1,j(x) =



1 if x ∈ {a, c, c′, d}

σ−1
m+1

(
(κm,j ◦ φa)(x)

)
if x ∈ comp[2,m+1](a) and x 6∈ {a, c′}

σ−1
m+1

(
(κm,j−1 ◦ φb)(x)

)
if x ∈ comp[2,m+1](b) and x 6= b

σ−1
m+1

(
(κm,j−1 ◦ φc)(x)

)
if x ∈ comp[2,m+1](c) and x 6= c

σ−1
m+1

(
(κm,j−2 ◦ φd)(x)

)
if x ∈ comp[2,m+1](d) and x 6= d

By our induction hypothesis, κm,j, κm,j−1, and κm,j−2 are subface-friendly. To prove

that κm+1,j is subface-friendly, it suffices to check that {y ∈ comp1(x) |κm+1,j(y) = 1}

is a subface of comp1(x) for x ∈ {a, c, c′, d}. For x ∈ {a, d}, this latter condi-

tion is trivial since comp1(x) is a two-element chain, x is its minimal element, and
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κm+1,j(y) > 1 if y ∈ comp1(x) \ {x}. Based on the above analysis of the four-

element diamond comp1(c), we discern that κm+1,j(y) > 1 if y ∈ comp1(c) \ {c, c′′}.

So, {y ∈ comp1(x) |κm+1,j(y) = 1} = {c, c′′} is a subface of comp1(x) whenever

x ∈ {c, c′′}.

Finally, to complete the induction argument we assume that j = m + 1. Here,

there are exactly four Bm-maximal elements in LDeC
B (m+ 1,m+ 2):

a =
0 1 · · · 1 1

0 0 · · · 0 0
1 , b =

1 1 · · · 1 1

0 0 · · · 0 0
0 ,

c =
0 1 · · · 1 1

1 0 · · · 0 0
0 , and d =

1 1 · · · 1 0

1 0 · · · 0 0
0 .

The ellipses on the top row of each of the above tally diagrams indicate a sequence of

consecutive 1’s beginning in position 3; the bottom row ellipses indicate empty boxes.

In the Bm-component of tally diagram a, as we move from the maximal element

and towards the minimal element, we can view the 0’s as moving counterclockwise

from the bottom row of the diagram and into the top row. It is evident, then, that

comp[2,m+1](a) is isomorphic to LDeC
B (m,m+1). The Bm-components of tally diagrams

b and c are straightforwardly isomorphic to LDeC
B (m,m + 1), and b = maxm+1,m+1

is the unique maximal element of LDeC
B (m + 1,m + 2). The Bm-component of tally

diagram d is isomorphic to LDeC
B (m− 1,m + 2). As in the preceding case, comp1(c)

is a diamond consisting of the following four elements:

c =
0 1 · · · 1 1

1 0 · · · 0 0
0 , c′ =

0 1 · · · 1 1

0 1 · · · 0 0
0 ,

c′′ =
1 0 · · · 1 1

1 0 · · · 0 0
0 , and c′′′ =

1 0 · · · 1 1

0 1 · · · 0 0
0 .

We have c′ ∈ comp1(a), c′′ ∈ comp1(d), and c′′′ ∈ comp1(b). We intend to assign

color 1 to vertices c and c′′. Now c′′ has positive depth in compi(c
′′) if and only if
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i ∈ {1, 2}, and comp2(c′′) is a two-element chain with c′′ as its minimal element.

Thus, if we assign color 1 to the vertex c′′, then this choice will not interfere with the

subface-friendliness of the vertex-coloring function that comp1(d) inherits when the

induction hypothesis is applied.

Define a vertex-coloring function κm+1,m+1 : LDeC
B (m+1,m+2)\{maxm+1,m+1} −→

[1,m+ 1] as follows:

κm+1,m+1(x) =



1 if x ∈ {a, c, c′, d}

σ−1
m+1

(
(κm,m ◦ φa)(x)

)
if x ∈ comp[2,m+1](a) and x 6∈ {a, c′}

σ−1
m+1

(
(κm,m ◦ φb)(x)

)
if x ∈ comp[2,m+1](b) and x 6= b

σ−1
m+1

(
(κm,m ◦ φc)(x)

)
if x ∈ comp[2,m+1](c) and x 6= c

σ−1
m+1

(
(κm,m−1 ◦ φd)(x)

)
if x ∈ comp[2,m+1](d) and x 6= d

By our induction hypothesis, κm,m and κm,m−1 are subface-friendly. To prove that

κm+1,m+1 is subface-friendly, it suffices to check that {y ∈ comp1(x) |κm+1,m+1(y) =

1} is a subface of comp1(x) for x ∈ {a, c, c′, d}. For x ∈ {a, d}, this latter condi-

tion is trivial since comp1(x) is a two-element chain, x is its minimal element, and

κm+1,m+1(y) > 1 if y ∈ comp1(x) \ {x}. Based on the above analysis of the four-

element diamond comp1(c), we see that κm+1,m+1(y) > 1 if y ∈ comp1(c) \ {c, c′′}.

So, {y ∈ comp1(x) |κm+1,m+1(y) = 1} = {c, c′′} is a subface of comp1(x) whenever

x ∈ {c, c′′}.



59

References

[ADLP] L. W. Alverson II, R. G. Donnelly, S. J. Lewis, and R. Pervine, “Con-
structions of representations of rank two semisimple Lie algebras with
distributive lattices,” Electronic J. Combin. 13 (2006), #R109 (44
pp).

[ADLMPPW] L. W. Alverson II, R. G. Donnelly, S. J. Lewis, M. McClard, R. Per-
vine, R. A. Proctor, and N. J. Wildberger, “Distributive lattices de-
fined for representations of rank two semisimple Lie algebras,” SIAM
J. Discrete Math. 23 (2009), 527–559.

[Com] L. Comtet, Advanced Combinatorics, Reidel, Boston, 1974.

[DeC] C. De Concini, “Symplectic standard tableaux,” Adv. Math. 34 (1979),
1–27.

[Don1] R. G. Donnelly, “Explicit constructions of representations of semisim-
ple Lie algebras,” Ph.D. thesis, University of North Carolina, 1997.

[Don2] R. G. Donnelly, “Symplectic analogs of L(m,n),” J. Comb. Theory
Ser. A 88 (1999), 217–234.

[Don3] R. G. Donnelly, “Explicit constructions of the fundamental represen-
tations of the symplectic Lie algebras,” J. Algebra 233 (2000), 37–64.

[Don4] R. G. Donnelly, “Extremal properties of bases for representations of
semisimple Lie algebras,” J. Algebraic Combin. 17 (2003), 255–282.

[Don5] R. G. Donnelly, “Extremal bases for the adjoint representations of the
simple Lie algebras,” Comm. Algebra, 34 (2006), 3705–3742.

[Don6] R. G. Donnelly, “Eriksson’s numbers game and finite Coxeter groups,”
European J. Combin. 29 (2008), 1764–1781.

[Don7] R. G. Donnelly, “Poset models for Weyl group analogs of symmet-
ric functions and Schur functions,” unpublished research manuscript,
2018.

[DDDS] R. G. Donnelly, E. A. Donovan, M. W. Dunkum, and T. A. Schroeder,
“Move-mini-mizing games and diamond-colored modular and distribu-
tive lattices (unabridged),” arXiv.

[DDS] R. G. Donnelly, E. Donovan, and T. A. Schroeder, “Domino games and
lattice models for fundmental representations and elementary Weyl
group symmetric functions: The type A and C cases,” in preparation.

[FH] W. J. Fulton and J. Harris, Representation Theory: A First Course,
Graduate Texts in Mathematics vol. 129, Springer-Verlag, New York,
1991.



60

[Gil] M. R. Gilliland, “Distributive Lattices and Weyl Characters of Exotic
Type F4,” Master’s thesis, Murray State University, 2008. Available
at:
http://campus.murraystate.edu/academic/faculty/rdonnelly/

Research/MGThesis.pdf

[HL] P. Hersh and C. Lenart, “Combinatorial constructions of weight bases:
the Gelfand-Tsetlin basis,” Electronic J. Combin. 17 (2010), #R33 (14
pp).

[Hum] J. E. Humphreys, Introduction to Lie Algebras and Representation
Theory, Graduate Texts in Mathematics vol. 8, Springer-Verlag, New
York, 1972.

[Kac] V. G. Kac, Infinite-dimensional Lie Algebras, 3rd edition, Cambridge
University Press, Cambridge, 1990.

[KN] M. Kashiwara and T. Nakashima, “Crystal graphs for representations
of the q-analogue of classical Lie algebras,” J. Algebra 165 (1994),
295–345.

[Kum] S. Kumar, Kac–Moody Groups, Their Flag Varieties and Representa-
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