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Evidence of variable climate and resources during the 

Late Pleistocene and Holocene at Gona, Ethiopia 

Abstract 

The African Humid Period (AHP) spanned a period of approximately 15 to 5             

thousand years ago (ka) and resulted in Northern and Eastern Africa being wetter             

than today. This climate change event impacted flora, fauna, and humans to an             

unknown extent. Much of the work on the AHP across Eastern Africa utilizes             

lacustrine and marine proxies rather than river-based (fluvial). Gona, located in           

the Afar region of Ethiopia, is known for its extensive archaeological and fossil             

records in fluvial deposits. However, the paleoenvironment of the AHP at Gona            

has not been investigated. This study uses stratigraphy, geochronology, and          

paleopedology to reconstruct the Late Pleistocene and AHP paleoenvironments.         

We examine two paleosols, the Odele and Erole paleosols, located in the Asbole             

study region of Gona. The Odele paleosol is between the Korina Tuff (<39 ka) and               

the Kilaitoli Tuff (~25.7 ka) and weathered during late-stage MIS-3 and MIS-2            

during the Late Pleistocene. The Erole paleosol, a relict soil that weathered            

during the AHP, is ~15 m above the Kilaitoli Tuff and immediately above a              

calibrated 14C age of 12 ka. Both paleosols formed along paleo-tributaries of the             

ancestral Awash River, as only matrix-supported gravels are found. The Erole           

paleosol is darker and may have more organic matter than the Odele paleosol.             

Average strain calculations using paleosol geochemistry show a volumetric collapse on the order of 34 ± 4% in the Erole                    

paleosol and little to no dilation/collapse in the Odele paleosol, 0 ± 2%. Calculations of open-system mass transport of                   

elements through the profiles (Tau) show an 18 ± 7% loss of SiO2 and a 69 ± 5% loss of CaO in the Erole paleosol, which                          

are greater than the 2 ± 1% loss of SiO2 and 1 ± 3% loss of CaO in the Odele paleosol. These strain and tau results suggest                           

more intense weathering and elemental loss in the Erole paleosol. The geochemistry is consistent with recent                

paleoclimate reconstructions, where an increase in collapse and elemental loss from the Odele to the Erole paleosol                 

coincides with increased rainfall from the Late Pleistocene to the AHP. Specific paleoenvironmental indicators, as well as                 

the evident increase of rainfall and the presence of grasslands, provide more abundant and diverse resources to Homo                  

sapiens living in Gona during AHP time. 

 



 

Introduction 

East Africa is a focal point of many hallmark events in the history of human evolution                

and migration with evidence linking these events to climate change (deMenocal, 1995). This             

region records millions of years of hominin evolution, from Ardipithecus ramidus to            

anatomically modern Homo sapiens, in sedimentary deposits. Fossil and archaeological deposits           

are well-dated due to the volcanic nature of the East African Rift System, as tephra and ash                 

deposits are readily dated and correlated across sites (Feibel, 1999; Roman et al., 2008).              

Climate reconstructions using dust and pollen deposits in marine sediment cores, as well as              

paleolimnology (lake levels and cores) in the region, suggest a gradual shift towards aridity              

since 2.8 million years ago (Ma), with oscillations being attributed to orbital forcings driving              

non-linear, rapid, and large-amplitude climate change. In the case of the AHP, increased levels              

of insolation resulted in the intensification of the African monsoon, which led to a series of                

positive ocean and vegetation-related feedbacks (deMenocal, 1995; deMenocal et al., 2000).  

An important locality that holds clues to the story of human evolution and climate              

change in East Africa is Gona, Ethiopia, with six million years of sedimentary, fossil, and               

archaeological records (Quade et al., 2004,2008; Wynn et al., 2008). The most recent period of               

climate change in this area, the African Humid Period (AHP), is present at Gona and spanned 15                 

to 5 thousand years ago (ka), according to lacustrine and marine proxies (Beck et al., 2018;                

Costa et al., 2014; Foerster et al., 2015; Mercone et al., 2000). Yet, few reconstructions using                

paleosols have been performed for the AHP, despite deposits present in the Busidima             

formation at Gona and nearby Dikika (Wynn et al., 2008). The use of fossil soils, known as                 

paleosols, provides a direct environmental analysis of the location where a soil formed (Beverly              

et al., 2018), providing a more localized view of past environments. These paleosols are useful               

to anthropologists and archaeologists working at hominin sites in East Africa as they provide              

paleoenvironmental context of artifacts and fossils. Conversely, marine and lacustrine          

paleoenvironmental proxies are limited in offering a localized view of as they integrate over a               

larger spatial area. 
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This study uses sedimentology, stratigraphy, and paleosols to examine how the wetter            

African Humid Period affected past environments at Gona compared to a drier Late Pleistocene              

interval. The results are discussed in terms of potential resources available to those hominins              

during two unique climate intervals. 

 

Methods 

Field sites and location: The study area is the Gona paleoanthropological project area in              

the Afar regional state of Ethiopia, encompassing ~130 km2 (Figure 1). The project area is               

known for the fossil presence of Ardipithecus sp., Australopithecus sp., and Homo sp. (Quade et               

al., 2004, 2008), as well as some of the oldest known stone tools, dating from ~2.6 Ma (Semaw                  

at al., 2003).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The Gona Paleoanthropological Project Area (in the Afar regional state) with drainages, along which                

archaeological sites are noted. Labelled drainages are ephemeral tributaries that drain into the perennial Awash               

River to the east.  
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Paleosols were sampled in the field, with attention paid to the level of soil development and                

the presence of vertic features. Soils form due to the interaction of the climate, organisms,               

relief, parent material, and topography in a given area, as detailed below (Jenny, 1941): 

 

 

 

Vertic features such as slickensides are indicative of paleo-Vertisols and are desired due to              

known landscape positions. Since soils will form due to landscape position (relief) and parent              

material, controlling for these factors allow us to attribute differences in soil properties to              

changes in other soil-forming characteristics. Thus, these paleo-Vertisols likely formed in a            

distal floodplain setting from tributary sediments. 

Laboratory methods: 

Geochemistry: All samples were processed for bulk geochemistry via X-ray fluorescence           

spectroscopy (XRF) and evaluated using a mass-balance approach as detailed by Brimhall et al.              

(1991). These calculations use soil horizon geochemistry normalized to the parent material            

geochemistry to quantify weathering throughout each soil profile, using immobile index           

elements such as titanium (Ti) and zirconium (Zr). Titanium was chosen as the immobile index               

element, as Ti is more abundant in the fine silt and clay-size fraction, which is the dominant size                  

class in these paleosols (Stiles et al., 2003). 

Strain ( uses soil bulk density (Bd, or ρ) to quantify volumetric changes in a soil )εi,w                

profile relative to the parent material (otherwise known as the C horizon) and is calculated as                

follows: 

εi,w = ρp
ρw

C i,p

C i,w
− 1  

In which ρp represents the bulk density of the parent material (in g/cm3),ρw represents the                

bulk density of the weathered horizon (in g/cm3), Ci,p represents the concentration of the              
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immobile index element in the parent material, and Ci,w represents the concentration of the               

immobile index element in the weathered horizon (Brimhall et al., 2001). A positive number              

represents dilation, or addition of volume, while negative numbers represent collapse, the loss             

of volume. Changes in strain are due to weathering and bioturbation resulting in soil expansion               

through mass addition and pore development or soil collapse due to mass loss and compaction.  

The open-system, mass-transport function, Tau, ( ) uses the same concept as strain     τ j,w        

to quantify elemental gain and/or loss throughout the profile, relative to the parent material. It               

is calculated as follows, according to Brimhall et al. (2001): 

τ j,w = C j,p

C j,w C i,p

C i,w
− 1  

In which Cj,w and Cj,p represent the concentration of the mobile element in the weathered               

horizon and the parent material. As illustrated above, a positive value indicates the             

accumulation of a mineral or element while a negative value indicates loss during weathering.  

 

Results 

Stratigraphy, geochronology, and sedimentology 

Stratigraphy was mapped throughout the study areas, with tephra layers correlated           

dated (Figure 2a). Two paleosols, an AHP paleosol in the Erole drainage and a Last Glacial                

Period (LGP) paleosol in the Odele drainage, are also sampled (Figure 3b-c) and given a               

temporal context via chronologic work. The Erole AHP paleosol formed during the terminal             

Pleistocene and into the Early Holocene (Stinchcomb et al., in prep). The Odele LGP paleosol               

(Figure 2c) likely weathered during late stage MIS-3/MIS-2 (Lisiecki and Raymo, 2005). 
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Figure 2a-c. Composite stratigraphy (a) and sampled paleosol profiles from (b) Erole (AHP) and (c) Odele (LGP).                 

Tuffs (yellow) have been dated via Ar-Ar dating and Profiles are broken up by the stratigraphic unit. Grain size (clay,                    

silt, sand, and gravel), sedimentary features and structure, soil horizonation, and color (via NIX colorimeter and                

Munsell Color System) are shown for each paleosol.  

The black to very dark gray color of the Erole AHP paleosol (Figure 2b) and other AHP                 

deposits is likely associated with an increase in soil organic carbon, consistent with on-going              

work (Takashita-Bynum, 2019). Slickensides (in horizons containing “ss”) are well-developed          

and indicate shrinking and swelling of the soil, due to (1) the fine-grained particle size and (2)                 

periodic water moving through the soil profile. Gastropod shells of the genus Melanoides             

require perennial water and are found across these AHP deposits at Odele, Erole, and Kilaitoli.               

At Erole, the shells are found in dense concentrations (Figures 3b, 3c), including at the base of                 

the sampled paleosol profile. Carbonized wood (Figure 3d) and tufa deposits (Figure 3e) were              

also found at Erole, indicating the presence of woody plants and freshwater springs in the area.  
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Figure 3a-e. Sedimentary indicators    

of the African Humid Period. Image      

A shows the dark AHP deposit at       

Kilaitoli, people for scale. Images B      

and C show Melanoides sp. shells,      

occurring in concentrations across    

AHP sites (above pick head). Image      

D shows a piece of carbonized      

wood with a knife for scale at       

Erole, likely deriving from a     

riparian woodland. Image E shows     

a tufa deposit, having formed from      

a freshwater spring at Erole.  

 

 

 

In contrast to the Erole AHP paleosol, the Odele LGP paleosol (Figure 2c) is consistently               

lighter in color than the AHP paleosol. While the Odele paleosol also exhibits slickensides, they               

are less developed. Field mapping of nearby Odele stratigraphy shows that correlative layers             

are also lighter in color. Gastropod shells belonging to the genus Pupilla were observed along               

layers equivalent to the Odele LGP paleosol. No Melanoides shells were observed. The Kilaitoli              

Tuff, which outcrops immediately above the LGP Odele paleosol, shows exceptional           

preservation of volcanic glass with little evidence of weathering.  

Paleosol geochemistry 
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Geochemistry from the Erole AHP paleosol and the Odele LGP paleosol show collapse in              

both soils (negative strain), but a greater amount in the Erole AHP paleosol (Figure 4). Erole                

collapsed by 39 ± 8 %, losing up to 46 % of its original estimated volume in the uppermost                   

horizon. The Odele LGP paleosol exhibited little to no strain (-5 ± 4 %).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Strain of paleosols using bulk geochemistry. Both paleosols exhibit collapse, indicating a loss of volume                 

relative to the parent material. Titanium was used as the immobile index element.  

Similar to that of strain, the tau calculations show mass loss with respect to SiO2 and CaO in                  

both profiles, but more so in the Erole AHP paleosol (Figure 5). The Erole AHP paleosol lost 25 ±                   
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13 % of SiO2 and 71 ± 6 % of CaO (Figure 5). The Odele paleosol exhibits much less loss than                     

Erole, with a 8 ± 4 % loss of SiO2 and 7 ± 3 % loss of CaO.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Elemental mass-balance (Tau) of paleosols using bulk geochemistry. Both soils exhibit a net loss of both                  

silica and calcium. Titanium was used as the immobile index element.  
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Discussion 

Field observations suggest the presence of perennial water at Gona during the AHP. The              

presence of the gastropod genus Melanoides indicates wetter, pluvial conditions when these            

sediments were deposited. These shells are also found at the base of the Erole paleosol and                

require perennial water. Carbonized wood found at Erole suggests woody plants occurring in             

the landscape in the form of gallery forest. These are evident today along the perennial Awash                

river. Tufa deposits during the AHP suggest that freshwater springs in the area were fed with                

sufficient amounts of groundwater. Groundwater present in a large enough quantity to sustain             

springs—as the tufa deposit indicates—suggests waterlogged soil and the relative increase of            

water moving through the surface and subsurface. This is further reflected by more negative              

strain and tau values. Combined, these paleoenvironmental indicators suggest that the AHP            

environment at Gona had ample vegetation and water. 

Consistent with these observations, the paleosol geochemistry shows more net loss in            

volume and mass during the AHP than during the LGP. Both soils are formed through the                

weathering of unconsolidated sediments into more stable forms (the soil), but differential            

volumetric and elemental loss suggest differences in rates and intensities of weathering.  

Strain and tau values are consistently more negative based on the AHP (Erole)             

geochemistry than the LGP (Odele) geochemistry. The increased collapse during the AHP            

suggests an increase in pore space within the soil, likely due to more precipitation flowing               

throughout the system as well as an increased amount of bioturbation. This bioturbation is              

potentially due to more flora and fauna living at the land surface and within the soil, sustained                 

by more habitable conditions. Gastropod shells found at the AHP sites may have contributed to               

this, as Melanoides and other gastropods burrow (Beeston and Morgan, 1979). Both soils             

exhibit slickensides, created by the shrinking and swelling of the soils during wet-dry periods,              

leading to the formation of soil structure and pores, likely driving collapse. 
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Both deposits show elemental losses, with the AHP paleosol at Erole having more loss in               

both elements analyzed than the LGP paleosol at Odele. Silica is more susceptible to leaching               

and removal in alkaline soils, especially when there is (1) an increase in temperature and (2) an                 

increase in available water (Sommer et al., 2006). This suggests that there was a likely increase                

in precipitation and temperature during the AHP, relative to the LGP at Odele. Dissolution and               

loss of Ca from calcite and volcanic glass likely occurred when soils were wet and respired CO2                 

was high, driving acidity (e.g., Van Den Berg and Loch, 2000). Slickensides in the soil also                

support the notion that these soils underwent repeated wet-dry cycles, where Ca-rich waters             

were drained and resulted in Ca loss. Lastly, soil color is darker in the AHP paleosol than the                  

previous LGP paleosol, which may suggest an increase in soil organic matter (OM) as seen in the                 

increase of TOC at Kilaitoli, another AHP paleosol (Takashita-Bynum, 2019). 

An uncertainty in our work is the lack of knowledge of parent material uniformity in the                

two paleosols examined. It is well known that hydrodynamic size sorting of grains during flood               

deposition likely affected the textural and mineralogical composition of the sediments. As            

immobile elements in minerals are sometimes found more frequently in discrete particle-size            

classes, the sorting of sediment during deposition may alter the chemistry of the parent              

material vertically within a profile. We are exploring this uncertainty by examining the silt-size              

geochemistry and results are forthcoming.  

 

Conclusion 

Sedimentological features seen in the field agree with our geochemical calculations,           

suggesting that there was an increase in precipitation, water availability, and vegetation during             

the African Humid Period at Gona, Ethiopia. The presence of spring deposits and organisms              

indicating year-round water may explain the increased amount of calcium and silica leached             

from minerals seen in the AHP paleosol at Erole relative to the LGP at Odele. Desilication, in                 

particular, is driven by increased precipitation and temperature (Sommer et al., 2006). Gona             
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likely experienced increased desilication as the environment transitioned from an arid           

environment into one with semi-arid conditions. Collapse of the soil during AHP weathering             

suggests increased amounts of precipitation and water moving throughout the system in            

addition to increased bioturbation and shrink-swell activity. 

Paleosols provide the direct, localized reconstruction of environments and past climates           

that are particularly useful in archaeological contexts. The availability of water, vegetation, and             

organisms in the Gona area during the AHP would have provided a more hospitable              

environment for human occupation than during the prior dry and semi-arid LGP. 
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