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ABSTRACT 

 Inteins (intervening proteins) invade genes at the DNA level and splice out at the protein 

level.  Once thought of as only a parasitic type of a mobile genetic element, recent work suggests 

a mutualistic relationship has formed in some cases within bacterial and archaeal hosts. After 

translation, a precursor protein is formed with the intein between two exteins. The intein is 

catalytic and can excise itself out through protein splicing. Intein insertion is biased towards the 

active site of the protein and is thought to cause inactivation of the host protein prior to splicing. 

Intein splicing is responsive to a number of environmental cues, suggesting that conditional 

protein splicing may serve as a novel form of post-translational regulation. The Pyrococcus 

horikoshii (Pho) RadA intein will splice in response to substrate single-stranded DNA (ssDNA). 

Splicing of this protein is inhibited when ssDNA is not present through intein-extein interactions. 

In this study, the Pho RadA intein was moved from its native position to alternative locations 

within the RadA sequence. In all alternative positions tested, the intein could no longer splice, 

even though predictive methods suggest it should. The results provide a greater understanding of 

intein site selection and point towards a rather complex evolutionary relationship between the 

intein and its hosts. 
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INTRODUCTION 

 Inteins are mobile genetic elements capable of invading host genes at the DNA level and 

then self-splicing out at the protein level. Inteins are found in all domains of life, with particular 

abundance in prokaryotes (~25% of bacteria and ~50% of archaea) (Novikova, et al. 2015). 

Every intein is generally similar in structure and has related mechanisms of splicing (Eryilmaz, 

et al. 2014). An intein is capable of inserting itself into the genome at the DNA level and is then 

expressed into a protein through transcription and translation. Inteins were historically thought to 

be nothing more than molecular parasites that did not benefit the host in any way (Lennon et al. 

2017).  However, recent evidence suggests some inteins are not purely selfish and that they have 

evolved regulatory purposes with their protein hosts. In many active sites, ATP cannot bind, and 

the protein is unable to function when an intein is present. An intein regulates essential functions 

within its host so it is not surprising that over 70% of all inteins are found within ATPase 

proteins and over 60% of them are localized in proteins that are involved in DNA replication, 

recombination, and repair (Novikova, et al. 2015). An intriguing post-translational method of 

protein regulation is obtained from the strategic placement of the inteins in the active site 

because splicing can be dependent on environmental cues or even substrates of the host protein.  

 Inteins have generated interest in a variety of fields including microbiology, protein 

engineering, and medicine. As of now, affinity tags mediated by self-cleaving inteins are used 

for a more efficient purification process of proteins and enhanced protein labeling. In this 

process the intein is used to fuse an affinity tag onto the protein of interest. Next, cleavage, rather 

splicing, of the intein is induced by changing the pH or temperature conditions. The use of 

inteins opens up new opportunities to develop revolutionary means of protein engineering by the 

combining of two separate polypeptide segments. This can be achieved with the use of trans- 
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splicing inteins that are expressed as separate polypeptides and splice upon reassembly (Wood et 

al. 2014). Currently, the CRISPR/Cas9 system is a good example of the utility of the split-intein 

design. It is being utilized in genetic research with the potential of treating a variety of genetic 

diseases in the future. The use of the CRISPR/Cas9 is somewhat limited because the delivery of 

the adeno-associated virus is hindered by the relatively large size of the Cas9. However, 

biologists have been delivering the Cas9 encoding sequence into its destination by separating it 

into two parts. Intein-mediated trans-splicing is then used to ligate them together. After its 

induction into the cell, the Cas9 protein is able to locate the target gene in the organism. The 

target gene is then cut in order to edit its genome. This technique is utilized to give researchers 

knowledge on the target gene function (Truon et al, 2015).  

 Inteins are present in a large variety of bacterial pathogens, but they are not present in 

humans or other multicellular eukaryotic hosts. This particular trait gives inteins great potential 

as drug target. Mycobacterium tuberculosis is a bacterium that has one of its four inteins within 

the RecA protein (Zhang et al. 2010). This particular bacterium is a highly contagious pathogen 

that infects individuals in all parts of the world and is the global leading cause of deaths by an 

infectious disease. Recently, it has been found that cisplatin (a common chemotherapy drug) 

represents an exciting lead compound for intein-specific inhibitors. Based on numerous lines of 

evidence, cisplatin binds to the RecA intein which in turn prevents intein splicing (Chan et al. 

2016). This discovery opens the possibility of using alternative methods to fight bacterial 

infections. Notably, this knowledge could potentially be efficiently utilized to combat the 

growing antibiotic resistance crisis. In fact, bacteria such as Coxiella burnetii and 

Mycobacterium leprae, as well as the fungus Cryptococcus neoformans, all contain essential 

functioning proteins that house inteins. This means diseases such as Q-fever, leprosy, and  
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cryptococcal meningitis could potentially be treated using intein splicing to induce inhibition. 

These are examples of the multitude of human diseases that could have promising treatment 

results using inteins (Zhang et al. 2009).  

 An extein is a polypeptide sequence that flanks the intein. A biologically active protein 

contains two exteins that are linked together after the self-splicing of the intein. The reaction of 

splicing takes place in a mechanism with four steps. Numbering is intein-centric, with -1 residue 

being the last residue of the N-extein, the first residue of the intein being the 1 residue, and the 

first residue of the C-extein being the +1 residue. First, the N- terminus amino acid of the intein 

(Cys or Ser) attacks the preceding peptide bond. Secondly, a thioester linkage that forms from 

the first step is attacked by the first residue of the C-extein (Cys, Ser, or Thr) in a nucleophilic 

reaction. This creates a branched intermediate that releases the intein which leaves a thioester 

bond between the exteins as a result. Lastly, the thioester bond is self-rearranged into a normal 

peptide bond. Therefore, the N-extein and C-extein are linked together at the end as a result. This 

leaves no evidence that the intein was ever present in the host protein (Lennon et al. 2017). Off-

pathway cleavage reactions can also occur depending on environmental conditions, where the N- 

or C-extein is cleaved prior to ligation. 
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Figure 1: Class 1 mechanism of intein splicing. The red region section the intein, the blue 

section represents the N-extein, and the green section represents the C-extein. Directly right of 

the intein is the +1 nucleophilic cysteine while the yellow cysteine on the left is the first residue 

of the intein. 

 In this study, we focus on an intein within the homologous recombinase RadA from the 

archaeon Pyrococcus horikoshii. RadA is a DNA-dependent ATPase that has the ability to 

catalyze homologous DNA pairing and strand exchange. This serves to repair DNA damage 

throughout archaeal genomes and increases genetic variation (Lennon et al. 2016). This 

recombinase protein is homologous to bacterial RecA and eukaryotic Rad51 and is thought to be 

regulated by mainly post-translational means. Inteins are not found in humans however despite 

these conserved homologous proteins. RadA can bind onto single-stranded DNA (ssDNA) before 

splicing, but the intein in the active site blocks ATP from binding (Lennon et al. 2016).  

 The RadA recombinase intein comes from archaeon Pyrococcus horikoshii (Pho), which 

is found in deep sea thermal vents. This particular recombinase intein is regulated by long-

distance intein-extein interactions that block splicing (Lennon and Belfort 2017). This suggests 

that the RadA protein is translated into an inactive form and then activated post-translationally. 

Interestingly, ssDNA accelerates protein slicing by ~50-fold. ssDNA, a natural substrate of 

RadA, is also a signal of DNA damage. In this elegant example, the very condition where the 

host protein (e.g. RadA) is needed by the cell induces protein splicing. This finding provides 

compelling evidence for the role the inteins can play in post-translational regulation (Lennon et 

al 2016).  

 There are significant observational differences between the splicing behavior of Pho 

RadA when it is in a native host protein versus a non-native host protein. Interestingly, while 

splicing is blocked in the native exteins in the absence of ssDNA, the intein splices with  
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remarkable speed and efficiency in non-native exteins. Despite this behavioral difference, it has 

not been studied how an intein can react when inserted into various non-native positions within 

the host protein, RadA. The only definite restriction to intein positioning within a protein is the 

presence of a nucleophile in the +1 position.  This study looks at the behavior of the RadA intein 

when using alternative threonine residues, the natural +1 residue, in the native sequence. This 

research helps to more fully understand the generality of the Pho RadA system, the use of inteins 

as post-translational modifiers, and possible effects of inteins in genetically modified systems. 
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EXPERIMENTAL DESIGN 

For the Pho RadA protein to splice, a nucleophile is needed in the +1 position. The amino 

acid in this position is the first amino acid in the C-extein sequence. Cystine, serine, and 

threonine are the three amino acid residues that can be utilized as a +1 nucleophile (Oeemig et al. 

2012). It is thought that the presence of these +1 nucleophiles is the only strict requirement 

needed to initiate splicing of the intein even though many factors can have an effect on the 

accuracy and speed of intein splicing (Topilina et al. 2015). Threonine is the amino acid that is 

utilized as the +1 nucleophile in wild type Pho RadA. The Pho radA intein was moved from its 

native position to ten other locations within the radA gene preceding other threonines within the 

primary sequence (seen in Fig. 2). The goal was to observe how an intein’s position within its 

radA sequence will alter the splicing ability of the intein. This was designed to test the theory 

that Pho RadA has coevolved with its host to utilize the intein as a method of post-translational 

modification. In this experiment Pho RadA WT (control) was used along with the ten variants of 

intein position using alternative +1 residues previously cloned by Dr. Lennon. These variants in 

turn have different extein junction positions. Also, a variant of Pho RadA without an intein and 

another variant with a deactivated intein were utilized. This allowed the experiment to have 13 

variations of Pho radA cloned separately within the pET vector. 
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Fig 2. Location of the inserted mutant RadA +1 nucleophiles. Each position represents an 

alternate threonine’s location that has the potential to be used as a +1 nucleophile for splicing 

after relocation of the intein. The threonines are T138, T142, T330, T353, T356, T408, T421, 

T462, T477 and T490. The red region represents the intein’s wild type location and the blue 

region represents the wild type N-extein. The green region represents the wild type C-extein. 

The vector also encodes for Beta-Lactamase, a gene that provides antibiotic resistance. 

This allowed for a special selectivity within the experiment because only cells containing the 

desired plasmid could be cultured in the presence of ampicillin. Agar plates containing ampicillin 

were also used because they inhibit the growth of cells that lack the Beta-Lactamase gene. This 

allowed for a selectivity and helped to ensure that only the desired protein was expressed.  

These proteins were expressed in E. coli before being purified using nickel 

chromatography. The pET vector also codes for six sequential histidines that precede the N-

extein. This His-tag is what allows the protein to be purified later in the experiment by the use of 

nickel chromatography. LacI regulates the expression of these genes to allow for the target gene 

to only be expressed when desired.  Purified proteins were then tested for their individual 

competencies of splicing.   
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Materials and Methods 

 The experimental step that occurred first was a transformation. The tubes containing 

competent cells (for transformation) remained on ice except where indicated. Using a 

micropipette, 1µl of the desired plasmid was then inserted into the competent cells and allowed 

to remain on ice for 10 minutes. The microcentrifuge tube was then transferred to a water-filled 

heat bath that was set to 42℃. This is a process known as heat shocking. It allows the uptake of 

the added plasmid by the isolated colony bacteria in the solution. The solution was held in the 

heat bath for ~10 seconds before being returned to ice for two minutes. Next, one mL of LB 

broth was added to the test tube that held the plasmid containing E. coli cells. This new solution 

was incubated at 37℃ for 1 hour. Then, 100 µl of this solution pipetted onto previously prepared 

agar plates and spread. They were placed in an incubator that was set to 37℃ and allowed to 

remain there overnight. These plates were prepared with LB and ampicillin. This serves as a 

selective marker to prevent contamination and get rid of the competent cells that did not take up 

the plasmid. The plasmid contains a gene called Beta-Lactamase that gives it antibiotic 

resistance. All the steps were performed repeatedly for the control groups and the mutants.  

 The second experimental step that occurred was cell growth and induction. A 5 mL 

starter culture was inoculated with the isolated colonies previously attained. This solution was 

incubated overnight at 37℃ while shaking at 250 RPM in the shaking incubator. This incubator 

keeps conditions within it constant. The starter culture was then pipetted into the growth media at 

a volume ratio of 1:100. This gave a total of 400mL LB growth media with ampicillin before the 

beakers were placed in a shaking incubator. It was set to remain at 37℃ and have 250 rpm. The 

solution was allowed to remain in the shaking incubator for 30-60 minutes while optical density  
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measurements were taken. The optical density measurements were taken using a 

spectrophotometer. Small samples of the solution were taken and placed into the cuvette. A new 

optical density reading was taken roughly every 30 minutes to monitor the progression of the 

bacteria into its log phase of growth. Log phase was determined when the solution reached an 

optical density reading of about 0.5. The log phase is when cellular ribosomes expressing the 

desired protein are at the highest concentrations. Optical density readings were stopped once log 

phase was attained and IPTG (isopropyl 𝛃-d-1-thiogalactopyranoside) was added. IPTG is used 

to induce overexpression of the protein of interest. IPTG is a molecular mimic of allolactose that 

binds to the Lac repressor, which in turn induces transcription and ultimately protein 

overexpression. 

 The third experimental step was expression and purification of the desired protein. The 

cells containing the expressed RadA protein needed to be separated from the spent media to 

obtain the cells for protein purification. The growth media solution was poured into centrifuge 

tubes and centrifuged at 3000xG for ten minutes. This allowed a pellet containing the cells and 

desired protein to form at the bottom. The spent media was carefully decanted from the tube, so 

the pellet was all that remained within it. Nickel Buffer A (20 nMTris pH 8, 500mM NaCl, 10 

mM Imidazole) was added on top of the pellet. The new solution containing the pellet was 

resuspended before being frozen at -20℃ overnight. This prepared the cells for sonication. 

Sonication is the use of ultrasound waves that agitate and disrupt the cell membranes of cells. 

These high-frequency waves cause the implosion of the cells which leads to successful lysing. 

The frozen solution was allowed to thaw before being placed in large beakers of ice. This ice 

prevented overheating from the sonication process therefore safeguarding against protein 

denaturation and premature splicing. The sonication probe was added to the solution. The  
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sonicator was set to 30% and ran at 30 second intervals (on and off) for 30 minutes. After a 

successful lysing, the solution was centrifuged at 20,000x for 20 minutes. This separates the 

desired proteins and cell debris into different layers. The supernatant, which contains the desired 

protein, was decanted in preparation for purification. 

The desired protein was obtained using an affinity chromatography. A column of Ni2+- 

resin was used. This column binds to the His-tag that is encoded on the RadA amino-terminus. 

After the binding of the desired protein, the column was rinsed with the washing solution. This 

pushed everything in the column through except our tightly bound protein of interest. Following 

this the column was then washed with an elution buffer. The Ni2+-resin has higher affinity for 

the elution buffer than the His-tag. The elution buffer contains imidazole which replaces the side 

chain of histidine within the column. The above steps were repeated multiple times for the 

different variants of proteins.  

The fourth experimental step was the use of splicing assays. These were used to 

determine the conditions that the inteins were able to splice, if at all. This was accomplished by 

the changing of two variables: addition of single-stranded DNA (ssDNA) and variability in 

temperature. ssDNA is a factor that can the RadA intein to splice. Each sample was heated to 

63℃, 75℃, and 87℃ for 15 minutes. This was done first without the presence of ssDNA. The 

process was repeated once more with the same temperature conditions but had 188ng/µl of 

ssDNA in addition. 

The fifth experimental step was the utilization of SDS-Page (sodium dodecyl sulphate-

polyacrylamide gel electrophoresis). This is a technique used to separate proteins based on their 

molecular weights. The combination of the polyacrylamide gel and SDS will allow separation  
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based on molecular weight because it allows the structure and charge of the proteins to be 

ignored. Electrophoresis will denature the proteins by exposing regions that are normally buried 

within the protein. In the electrophoresis unit, 1x Tris-Glycine-SDS buffer was loaded. The SDS 

in the buffer helps keep the denaturing proteins linear by coating the denatured protein with 

surfactant and has a pH range of 7-9 which makes it useful for biological systems. First, 5 µl of 

ladder was loaded into the gel. This gave us our template to determine the molecular weights of 

our samples. Next, 20 µl of the resuspended protein samples (15 µl of sample and 5 µl of dye) 

were loaded into the adjacent gel slots using a micropipette. The power supply was set to 200 

volts and ran for 30 minutes. Afterwards, the gel case was cracked and removed which gave an 

exposed gel.  

 Staining of protein with Coomassie dye occurred next using an automated stainer. The 

gel was placed in between two pieces of thick paper that had been moistened. It was then closed 

into the gel cassette holder and inserted into the machine. An 11-minute process of staining and 

destaining was run until the gel had been sufficiently stained. A gel picture was taken next using 

a gel imager. The technique used to photograph the gel was epi-illumination. A colored and 

black and white picture was taken and documented.  
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RESULTS 

 WT RadA (T325) serves as the control for the experiment while the intein was moved to 

several alternative threonine locations within the host sequence. The alternative locations of the 

intein tested were T138, T477, T353, and T408. The control’s comparison allows the experiment 

to be able to quantify the splicing within the RadA mutant variations. All samples were first 

tested without ssDNA or heating to see their ability to splice. 

 Prior to experimentation, a variety of characteristics of the modified mutants were 

predicted. They were the location of the intein within 3D space, splicing efficiency of -1 residue, 

threonine position of the +1 nucleophile, and secondary structure of the intein (Table 1).  

Threonine Position Used as 

+1 Nucleophile 

-1 

Residue 

Predicted -1 Residue 

Splicing Efficiency 

Secondary Structure 

of Intein  

T138 E 40% Loop 

T477 P 23% Unstructured 

T353 N 95% Loop 

T408 N 95% Loop 

T325 K 97% Loop-Native site 

Table 1: Table showing the threonine positions of the +1 residue, -1 residue, predicted splicing 

efficiency and secondary structure of the intein. 

 Upon data analysis, the mutant T353 precursor disappears, but does not splice as 

evidenced and there are no ligated exteins that are generated (Figure 3) This protein was 

expressed using the mentioned methods, a nickel pulldown was performed, and then the strain 

underwent two additional forms of treatment. These forms of treatment were heated without the 

presence of ssDNA while the other was heated in the presence of ssDNA. Both treatment groups  
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were heated to 63℃, 75℃, and 87℃ for 15 minutes a piece. 

 Further analysis of the expressed proteins by electrophoresis showed that our Pho RadA 

control spliced. The electrophoresis gave the results of the splicing assay. However, none of the 

manipulated mutants displayed significant splicing in the initial attempt (Fig 3 & 5).   

 

Figure 3: Splicing assay for the T353 mutant. The gel shows variations of this mutant compared 

to RadA WT. The ladder in the leftmost column serves as a reference.  

 

 

Figure 4. T353 equivalent position on Pyrococcus furiosus RadA. 
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Figure 5: Splicing assay for the T408 mutant. The gel shows the variation of the mutant 

compared to the ladder. 

 

 

Figure 6. T408 equivalent position on Pyrococcus furiosus RadA (native +1). 
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Figure 7: Splicing assay for the T138 and T477 mutants. The WT control serves as a reference 

point to compare the ligated exteins. 

 

 

Figure 8. T138 equivalent position on Pyrococcus furiosus RadA 
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Figure 9. T477 equivalent position on Pyrococcus furiosus RadA 

 

Figure 10. T325 equivalent position on Pyrococcus furiosus RadA 

 

 In addition, the projected splicing of T353 [Figure 3] did not occur even with the loop 

configuration and asparagine residue. Also, the mutant T408 was projected to show significant 

splicing, but the gel [Figure 5] shows that splicing did not occur even with its loop secondary 

structure and asparagine residue. The results showed that the WT control spliced under all 

conditions while the mutants did not splice under the addition of heat or ssDNA. Mutants T138 

& T477 [Figure 7] also showed no ligated exteins even though they were projected to splice less 

effectively due to their secondary structure and -1 residues [Table 1].  
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DISCUSSION 

 The inteins inability to splice at any positions tested outside of the native context was 

surprising, particularly given that the Pho RadA intein is extraordinarily known for its ability to 

splice better when flanked by non-native extein (Topilina et al. 2015). Each mutant had the same 

+1 nucleophilic amino acid residue required for splicing in the WT and still no splicing was 

observed. The final residue of the N-extein (-1 residue) has been shown to influence splicing of 

the Pho RadA and other inteins. A study conducted previously with a non-native exteins had 

changed the residue in the -1 position (Oeemig et al. 2012), allowing us to predict splicing 

efficiency in Table 1. At least two of our tested inteins, T353 and T408, had a favorable residue 

present in the -1 position (Table 1).  

There are a few plausible reasons as to why these mutants did not splice in their non-

native settings. Firstly, the secondary structure of the surrounding protein body could be a 

hindrance on the inteins ability to splice even though it theoretically should not be when it comes 

to the loop or unstructured configuration. The T353 nucleophile in the +1 position was singled 

out for this experiment because of this theoretical thinking. This particular intein has a -1-

asparagine residue with roughly a 95% predicted efficiency of splicing (Oeemig et al. 2012). As 

of right now there is not a clear explanation for why splicing results were not observed. 

Unfortunately, the results are fairly crude as they were not allowed to be conducted again due to 

the Covid-19 pandemic. If able the experiment would be conducted again to confirm the results 

presented in this thesis.  

Nevertheless, the results of this experimentation raise exciting new questions concerning 

this topic and the factors that go into successful intein splicing. Original thought suggested that  
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only the flanking residues of the extein contributed to the splicing ability of an intein, 

but studies have shown that splicing inhibition can be mediated by interactions between the 

intein and remote residues within the extein (Topilina et al, 2015, Lennon et al, 2019). Closer 

analysis of the 3D structure should be observed for each mutant and compared to the Pho RadA 

WT to see if splicing is being inhibited in a more permanent way. Another plausible explanation 

is that remote residues in the flanking extein regions interact with the mutant inteins while they 

do not influence the WT intein. The resulting mutant proteins were soluble when expressed and 

could be purified which means that they must have a reasonable amount of stability due to the 

fact that they are not being degraded. Another possibility is that partial misfolding could explain 

the resulting inability to splice. 

Overall, the results do not reflect upon the initial hypothesis, but they still raise new 

interesting questions. In the future lysine will be added to the -1 position to check if that changes 

the inactivity. This modification might work because lysine in the -1 setting is native in the 

native active site.  
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