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Abstract

We translate the RISK board into a graph which undergoes updates as the game

advances. The dissection of the game into a network model in discrete time is a novel

approach to examining RISK. A review of the existing statistical findings of skirmishes

in RISK is provided. The graphical changes are accompanied by an examination of

the statistical properties of RISK. The game is modeled as a discrete time dynamic

network graph, with the various features of the game modeled as properties of the

network at a given time. As the network is computationally intensive to implement,

results are produced by way of computer simulation. We propose three heuristic player

strategies of increasing complexity, and demonstrate the effectiveness of each through

a series of comparative simulations over a range of scalable values. The features are

used to produce a prediction-oriented model based on these findings. The probability

of a player win is modeled as a binary response to a single layer feed-forward neural

network. We demonstrate the predictive power of our model as well as the performance

increase of the player strategies. Recommendations for playing RISK well, based on

these results, are given.
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Chapter 1

Introduction

1.1 Purpose

This paper aims to develop the mathematical and statistical properties of diverse

player strategies in the classic board game RISK. RISK, the game of global domination,

is a strategic turn-by-turn game with up to six players. While many readers will be

familiar with the style of the game, a brief overview of the rules and play will be

provided.

The game is played on a predetermined board featuring 42 territories representing

major geographical or political regions of the world. Between the 42 countries there are

built-in connections. The connections are either physical borders that actually exist in

geography or oceanic paths of travel as indicated on the RISK board. In all, there are

81 such connections. These connections serve as possible routes of travel for conquest.

A RISK board is displayed in Figure 1.1 for illustrative purposes (Corporation, n.d.).

1
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Figure 1.1: A RISK Board In Game

At the onset of the game, the 42 territories are divided between the number

of players. The method for dividing the territories varies by player preference, but

two main styles exist, both of which will be briefly outlined. First, in the game there

exists a deck of cards referred to as RISK cards. The deck is representative of every

territory and only represents such a territory once. Distributing the cards in a random

fashion between the players will distribute all territories evenly between the players.

The players then simply populate the territories indicated by the cards they have been

dealt. Alternatively, the players can individually select the territories of their choosing

in some alternating fashion with a randomized player getting first pick. This style

helps to aid players in acquiring territories in regions they may prefer, but obviously

offers no guarantee as another player may select the desired territory to deplete the

remaining options in that particular region.

Once it is determined which territories belong to which players, the players begin

populating the map with units. This is done by each player starting with a sum of

40 units to place. The units are placed in an alternating fashion player by player,

typically placing units one unit at a time, with the first player being chosen randomly.
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Now that all territories are occupied and supplied with troops, the game can

begin. It is important to note that at no point in the game will a territory be absent

of troops. Again, the player to go first is typically decided randomly. The first of the

three phases of each turn is the drafting phase. The drafting phase is followed by the

attacking phase, which is followed by the reinforcement phase. A detailed discussion

of each phase will follow.

The drafting phase is characterized by a player receiving a number of units

and placing them, typically strategically, on their own territories for later use. The

number of units given to a player during the drafting phase is a function of how many

territories are held and if that player controls any continents entirely. The player is

given a base amount of units, R = max
{

3, bv/3c
}
, based on possession of v territories.

This guarantees a player receives a minimum of 3 units per turn, which will increase

as the player controls more territories. These units can be placed on any territory

held by the player. The units can be placed uniformly between all territories held,

individually or in bulk on territories of their choosing, or some other scheme deemed

valuable by the player. This is done without intervention or action by the opposing

players.

The player may receive additional bonus units for either possession of an entire

continent or for redemption of certain pairs of RISK cards. We will discuss the ways

by which a player will receive units for possession of an entire continent in Continent

Bonuses. The RISK cards present a layer of complexity which we will not address in

this study for reasons of simplification. An analysis featuring the RISK cards could

be repeated for all procedures we follow.

Once the player places all of their troops received at the onset of the draft phase,

the player moves into the second phase of the turn, the attacking phase. The attacking

phase is characterized by the player choosing to use excess troops on a territory in an
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attempt to conquer adjacent territories held by another player. The attacking phase

serves as an opportunity for the player to expand their control of the map, commit

to strategic skirmishes, or delay action until the desired opportunity arises. Possible

transitions during the attacking phase only include transitions onto territories held by

opposing players; that is, the player cannot travel through their own territories. All

of this is to say, the attacking phase entails two different players interacting, at the

discretion of the player whose turn it is.

In the event that a player chooses to attack an enemy territory, the attacking

player can use up to A = n− 1 attacking units from a single territory adjacent to the

target territory, where n is the number of units on the territory initiating the attack.

To initiate an attack, a minimum of one unit must remain occupying the territory

from which the attack is initiated. The A units of the attacking player then engage in

a skirmish with the defending units on the enemy held territory. We will explain the

details of the skirmish between the attacking units, A, and defending units, D, in The

Skirmish section.

The attacking player can initiate as many attacks as desired, from as many

territories as desired, provided there are sufficient units available to attack. Upon

completion of the attacking phase, the player moves into the third and final phase of

the turn, the Reinforcement Phase.

The Reinforcement Phase allows the player to shift units from a territory held

onto another territory held. For example, if the attacking player loses 5 units from an

attacking force of 7 in conquering a territory, it may prove wise to move several units

from another territory so as to reinforce the recently acquired position.

The Reinforcement Phase can be implemented in two ways. The first variation

allows players to move units from any territory held to any other territory held. The

second variation allows players to move units from any territory held to any other
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territory through which a path of held territories can be traced. The second variation

essentially requires a physical path to exist between the desired territories involved in

the reinforcement. The player is typically free to implement only one reinforcement,

while there exist variations of play in which a player can make as many reinforcements

as desired. Once the reinforcement phase is complete, the turn ends. The next player

undergoes their turn in precisely the same sequence of phases. The players alternate

taking turns until a single player holds all territories.

1.2 The RISK Board

The RISK board represents a planar projection of Earth as a board game. As stated

previously, the RISK board consists of 42 territories and 81 connections between

them. The 42 territories represent various geographical regions on Earth, while the

connections represent physical routes of travel by either land or sea. The territories can

represent broad regions, such as The Middle East, smaller portions of large countries,

such as the Western United States, or individual countries, such as Japan. The board

is divided into 6 continents, which roughly correspond to the continents of Earth. The

territories and the corresponding continents to which they belong are provided in

Table 1.1.

Table 1.1: Territory List by Continent
Continent North America South America Europe Africa Asia Australia

Territory

Alaska Argentina Iceland Egypt Kamchatka Indonesia
Northwest Territory Venezuela Ukraine North Africa Japan Western Australia
Alberta Brazil Southern Europe East Africa Mongolia New Guinea
Ontario Peru Northern Europe Madagascar Irkutsk Eastern Australia
Western United States Scandinavia Congo Yakutsk
Greenland Great Britain South Africa China
Quebec Western Europe Siberia
Eastern United States Siam
Central America India

Kazakstan
Ural
Middle East
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1.2.1 Continent Bonuses

With regards to the drafting phase, players can receive additional units for complete

control of continents. This section serves as a basis to understand which continents

are likely to be the subjects of repeated invasion or persistent dispute. Table 1.1

listed the 42 territories and the continent to which each territory belongs. Table 1.2

includes three measures of each continent. The first item is the continent bonus of

the associated continent. The bonus refers to the number of units a player will be

rewarded for beginning their turn with control of the respective continent. Note that

control of a continent during the opponent’s turn does not guarantee that a player

will receive a continent bonus. The second item is the number of territories in each

continent, a value we refer to as the size of the continent. The third item in Table 1.2

is the count of paths into the continent, a value we individually refer to as an entry.

Table 1.2: Continent Information
Continent Bonus Size Entries
N. America 5 9 3
S. America 2 4 2
Australia 2 4 1
Europe 5 7 4
Africa 3 6 3
Asia 7 12 5

1.3 The Skirmish

With a more thorough understanding of the drafting phase, we move to examine the

individual skirmish featured in the attacking phase more thoroughly.

The details of the skirmish are straightforward. The attacker can roll up to three

dice, but not more dice than number of attacking units. We let A denote the number

of attacking units and let D denote the number of defending units. Both A and D are
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subject to change as the skirmish evolves. For example, an attacking force of A = 4

units allows the attacker to roll a single die, two dice, or three dice. This decision

is entirely up to the attacker. Conversely, if we assume the attacker has only A = 2

units for attacking, the player can roll a single die or two dice, but not three dice.

In a similarly defined situation, the defender can roll up to two dice, but not

more dice than defending units, D. For example, if the defender has D = 6 units,

then the defender is allowed to roll a single die or two dice. For a defending force of

D = 1 unit, the defender can only roll a single die. Similar to the attacking situation,

if a defender has options regarding the amount of dice rolled, this decision is made

independently of the other players. Both players must choose to roll a non-zero number

of die.

The two players then roll all of their dice simultaneously. The maximum value

of the attacking dice is then matched with the maximum value of the defending dice.

If applicable, the second highest attacking die is then matched with the remaining

defending die. With these matchings, the attackers wins the individual roll if the value

of the die is strictly larger than the corresponding defending die. The defender wins

the individual roll if the value of the defending die is greater than or equal to the value

of the attacking die; that is to say, the defender wins individual rolls which result in a

tie. This comparison is done for both defending dice when applicable. Clearly, the

attacker will have one unused die when rolling all three dice.

When the attacker wins an individual roll, the defender reduces the units on

the defending territory by one. If two dice were rolled, the defender can lose up to

two units per roll. Similarly, when the defender wins an individual roll, the attacker

reduces the units of the attacking force by one. If the attacker rolled more than one

die, the potential for loss is increased accordingly.

The attacker can choose to either:



1.3. THE SKIRMISH 8

1. stop attacking at any time; or

2. proceed in attacking until either of the following:

a. the attacker has no remaining units to use for attacking (A = 0); or

b. the defender has no remaining units for defending (D = 0).

In the event that the player chooses to stop attacking, the remaining attacking

units simply retreat back to the territory from which they attacked. This option might

be employed if a player suspects the odds of success have fallen out of their own favor

or perhaps have another strategy in mind.

In the event that the player does not choose to retreat, the attack will continue

until one player’s force is defeated. If the attacking player loses all units in the

attacking force, then the attack concludes with no change in possession of territories,

though the units remaining on the defending territory are likely less than the units

initially available. The attacker may choose to attack the same target with units

from another territory, but can no longer attack from territory which has no available

units to attack. If the defending player loses all units in the defending force, then the

attack concludes with a change of possession of the territory which was being attacked.

The attacking player now has the option to place any number of the remaining

attacking force on the territory. The attacker must advance with at least one unit,

as no territory can be unoccupied, however the attacker may choose to advance

with a limited number of units so as to not leave another territory unnecessarily

vulnerable. Clearly, understanding the probabilities associated with the skirmish will

prove invaluable in pursuing mathematical underpinnings of the game. We produce a

brief example in Table 1.3 similar to the example provided by Tan (1997):
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Table 1.3: Skirmish Example
Turn Number of Armies Number of Dice Rolled Outcome of the Roll Number of Losses
0 Attacker Defender Attacker Defender Attacker Defender Attacker Defender
1 5 4 3 2 6,3,1 3,3 1 1
2 4 3 3 2 5,2,1 5,2 2 0
3 2 3 2 2 4,3 4,1 1 1
4 1 2 1 2 6 4,2 0 1
5 1 1 1 1 5 1 0 1
6 1 0

Table 1.3 illustrates the relevant skirmish intermediate steps, including the

attacking dice outnumbering the defending dice (and vice versa), the attacking die

beating the defending die (and vice versa), and ultimately one player winning the

skirmish.



Chapter 2

Model of the Game

Before outlining the contents of our model, we briefly review existing literature and

provide key assumptions for our analysis. The purpose of this review is twofold:

we aim to both implement existing procedures and compare the implications of our

findings with the advice found in existing literature.

We first examine existing literature on the mathematical and statistical nature

of the skirmishes in RISK. Primary sources of the information regarding skirmishes

in RISK can be found in Tan (1997) and Osborne (2003). As we’ll outline in the

following section, the approaches by Tan and Osborne represent small-scale interactions

in RISK. Our objective is to model these small-scale interactions as well as large-scale

interactions later, with the aim of strategically implementing findings of the small-scale

interactions in our analysis.

2.1 Markov Chain approximation to Skirmishes

This section is dedicated to reproducing the skirmish-focused results produced by

Tan and Osborne as well as examining the recommendations set forth by each. The

10
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discussion aims to demonstrate the ability to produce the probability of success of an

attack given the number of attackers and defenders by way of a Markov chain. The

primary questions at hand are laid out by Tan and repeated by Osborne:

If you attack a territory with your armies, what is the probability that you

will capture this territory? If you engage in a war, how many armies should

you expect to lose depending on the number of armies your opponent has

on that territory (Tan, 1997)?

To model this phenomena, we follow the notation of Osborne and Tan and

let A be the number of attacking units and D be the number of defending units, as

previously noted, at the beginning of an A×D skirmish. Furthermore, at the beginning

the nth turn, the state of the skirmish can be completely specified by providing the

number of attacking units, an such that 0 ≤ an ≤ A, and defending units dn such that

0 ≤ dn ≤ D (1997). Thus, we define the state of the skirmish to at the onset of the

nth turn to be

Xn = (an, dn) (2.1)

Clearly, from the definition of an, dn, and Xn, the skirmish at turn n = 0 can

be specified by the state X0 = (A,D), which corresponds to the beginning of the

skirmish. Any skirmish represented by a state Xn+1 can be probabilistically specified

by providing the state Xn of the skirmish (1997). Then we have that our state space

transition has the Markov Property:

P [Xn+1 = (an+1, dn+1)|Xn, Xn−1, ..., X1, X0]

=P [Xn+1 = (an+1, dn+1)|Xn = (an, dn))]
(2.2)
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That is to say, the probability of success at any turn n+1 given all previous turns,

depends only on turn n. Thus, the A×D skirmish can be modeled computationally

as a markov chain given by {Xn : n = 0, 1, 2, ...} (1997). The Markov chain can

be described by correctly specifying the transition probabilities. Tan specifies the

transition probabilities and assumes the maximum value of the attacker rolls and the

maximum value of the defender rolls are independent values, as well as the second

largest values of the attacker rolls and the remaining defender roll(Tan, 1997). Osborne

corrects this specification made by Tan, noting that the assumed independence of

the rolls is incorrect (Osborne, 2003). The reasoning behind specifying consecutive

state spaces as dependent is straightforward, each state space is a direct result of the

previous state which came about by either an initialization or a sequence of dice rolls.

Osborne offers corrected calculations as well as revised strategy recommendations.

The main strategic notion produced by Tan which warrants discussion is the following

statement:

That when both attacker and defender have the same number of armies,

the probability that the attacker wins is below 50%. (This is because in

the case of a draw, the defender wins.) (Tan, 1997)

While we find that this explanation is a drastic oversimplification, the correct

specification of the transition probabilities produces a far different result. Given

the aforementioned procedure for dice rolling and elimination of units, we model

the Markov chain computationally to efficiently produce transition probabilitites for

arbitrary values of A and D. Modeling the Markov chain computationally allows for

insights into effective strategies as well as examination of many related phenomena to

the outcome of a skirmish.

We are primarily interested in producing the probability of success of an attack.

From the simulation of probabilities of success, we obtain other helpful measures such
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a expected losses for both the attacker and defender (Osborne, 2003; Tan, 1997). We

could similarly examine expected remaining units. As noted in our assumptions, to

model the probability of success of an attack we assume the attacker commits to the

attack and does not withdraw from the attack until there is a clear winner. Given

the outlines for the dice rolling procedures, we produce the A×D matrix where each

entry is the result of 2500 simulations in Table 2.1.

Table 2.1: Attacker Win Percent for A×D Skirmish
H
HHH

HHA
D 1 2 3 4 5 6 7 8 9 10

1 0.42 0.11 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00
2 0.75 0.36 0.20 0.09 0.05 0.02 0.01 0.00 0.00 0.00
3 0.92 0.66 0.47 0.32 0.21 0.13 0.08 0.05 0.03 0.02
4 0.97 0.78 0.64 0.48 0.36 0.25 0.18 0.12 0.09 0.06
5 0.99 0.89 0.77 0.64 0.50 0.40 0.30 0.23 0.16 0.12
6 1.00 0.93 0.86 0.74 0.64 0.52 0.42 0.33 0.26 0.19
7 1.00 0.97 0.91 0.83 0.74 0.64 0.54 0.45 0.36 0.29
8 1.00 0.98 0.95 0.89 0.82 0.73 0.64 0.54 0.46 0.38
9 1.00 0.99 0.97 0.93 0.87 0.81 0.73 0.65 0.56 0.48
10 1.00 0.99 0.98 0.95 0.92 0.86 0.80 0.73 0.65 0.57

A table of similar values can be found in Osborne (2003). The table can be

used to determine the likelihood of attacker success, given values for both A and D.

Simply locate the number of attacking units of interest down the leftmost column

of the rows, the number of defending units as labeled across the columns, and the

corresponding element of the table indicates the probability of attacker success for the

given values. Additionally, values in which A ≥ D are boldfaced for readability and

ease of reference in upcoming discussions. We have produced a 10 × 10 matrix for

illustrative purposes in Table 2.1

Moreover, examination of the matrix reveals several trends. First, consideration

of the main diagonal reveals an interesting pattern. The value corresponding to

A = D = 1 is 0.42, which is greater than the next value in the diagonal, 0.36,
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corresponding the A = D = 2. This result is curious in that the attacker has higher

odds of success when initiating a 1 × 1 skirmish than a 2 × 2 skirmish, where the

attacker clearly has more units (and thus more dice to roll). This trend reverses in

the instance in which A = D = 3 and steadily increases as A becomes larger. Also

interestingly, we see than when A = D and A ≥ 5, the probability of success for the

attacker is greater than or equal to 0.5.

We are also interested in values of A such that A� D, as we suspect that the

probability of success is very high for the attacker. Note however that A� D being a

“success” is limited entirely to the small-scale interaction of the particular skirmish of

interest. Realistically, many instances in which A� D will indicate a player is acting

extremely defensively in general as the attacker has amassed significant units, and

may not be indicative of a winning strategy. However, we proceed to examine the first

column of the matrix in Table 2.2 for confirmation of our intuition.

Table 2.2: Attacker Win Percent for A×D Skirmish, First Column
HH

HHHHD
A 1 2 3 4 5 6 7 8 9 10

1 0.42 0.75 0.92 0.97 0.99 1.00 1.00 1.00 1.00 1.00

We see the probability of success increases substantially as we increase the value

of A, while the probability of success for smaller attacking forces is still quite high.

It becomes increasingly obvious that using more attackers drastically improves the

odds of success of an attack. Effectively, drastically outnumbered defenses present an

increased probability of success for the attacker. Similarly, we examine the first row

of the matrix in Table 2.3 to examine an example in which D � A, where we expect

a similar pattern to hold in favor of the defender.
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Table 2.3: Attacker Win Percent for A×D Skirmish, First Row
HH

HHHHA
D 1 2 3 4 5 6 7 8 9 10

1 0.42 0.11 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00

We see that the probability of success is very low for one attacker and decreases

as we move to the right of the matrix as we add defenders. Effectively, when attackers

are drastically outnumbered, the probability of success quickly decreases. Here we

have mathematical validation to the intuition that drastically outnumbered attacks

have an increased probability of failure.

We now produce a plot of the data in Figure 2.1 in which we label the x-axis

according to the number of attacking units, A, while placing the data for D values 5,

15 and 30, as well as data for A = D. We produce a line through each of these sets of

data for the count of defenders.
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Figure 2.1: 2D Probability Plot for A x D Skirmishes
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The trend for the line in Figure 2.1 A = D indicates the trend we previously

discussed, namely an initial dip for the 2× 2 skirmish followed by steadily increasing

values. Also, we see that instances in which D is very high result in a lower probability

of success for the attacker. Similarly, instances in which D is lower correspond to

higher probabilities of succuess for the attack.

We also visually examine the matrix by producing a surface plot in which the

x-axis represents the number of attacking units, A, and the y-axis represents the

number of defending units, D. The height of the plot in Figure 2.2 corresponds to the

probability located at the intersection of the Ath row and Dth column of Table 2.1.

Figure 2.2: 3D Probability Plot for A x D Skirmishes

The probabilities for successful attack will help to serve as guidelines for attacking

thresholds in subsequent strategy considerations. Given the probability of success for

A and D, we move to examine the number of units that are expected to be lost in a

skirmish by the attacker. We sample this distribution by simulation to produce the
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results similar to the simulations for attacker win percent. We illustrate the findings

in Table 2.4 in a similar A×D matrix which shows given an A×D skirmish, how

many units are expected to be lost by the attacker.

Table 2.4: Expected Attacker Losses for A×D Skirmish
H
HHH

HHA
D 1 2 3 4 5 6 7 8 9 10

1 0.59 0.89 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00
2 0.67 1.41 1.66 1.86 1.92 1.97 1.98 1.99 2.00 2.00
3 0.57 1.40 1.90 2.30 2.54 2.71 2.82 2.88 2.93 2.96
4 0.54 1.52 2.07 2.67 3.02 3.34 3.53 3.69 3.79 3.86
5 0.52 1.51 2.19 2.85 3.38 3.79 4.12 4.37 4.55 4.68
6 0.52 1.54 2.23 3.01 3.59 4.16 4.56 4.92 5.19 5.40
7 0.52 1.53 2.27 3.09 3.77 4.37 4.91 5.36 5.72 6.02
8 0.52 1.54 2.28 3.14 3.85 4.55 5.16 5.70 6.16 6.53
9 0.52 1.54 2.30 3.18 3.91 4.66 5.36 5.94 6.50 6.96
10 0.52 1.54 2.30 3.18 3.98 4.74 5.47 6.15 6.76 7.31

From Table 2.4, we again take notice of an anticipated pattern. Consideration

of the A = 1 and D = 1 element, we see the expected attacker loss is approximately

0.59. This is consistent with our previous finding that an attacker in such a scenario

has a probability of success of approximately 0.42. Given minor rounding error, we

could reason that since the probability of success is 0.42 in this instance, then 1− .42

is the probability of failure. The failure would correspond precisely to the attacker

losing 1 units, which occurs with probability 1− .42.

Similar consideration of the first row of the matrix in Table 2.4 indicates for

values of D > 1, the expected attacker loss approaches 1. Again, these results are

consistent with our examination of the expected attacker win percentage, where the

attacker is expected to lose with probability near 1.00 for greatly outnumbered attacks

when A = 1. The first column of the matrix in Table 2.4 is equally informative. We see

the expected attacker losses are roughly equal for A ∈ {1, 2, ..., 10}. This is consistent

with our findings that the attacker win percent for attacking values A � D, when
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D = 1 are almost a certain victory. Since minimal losses are experienced with low

attacker values, we would not expect more attackers to be lost when adding to the

attacking force only. We now produce a two-dimensional plot in Figure 2.3 of the

matrix for various values of A×D with maximum values of A = D = 30 for a more

broad view.
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Figure 2.3: 2D Expected Attacker Losses for A x D Skirmish

The two-dimensional plot illustrates precisely the nature of the expected attacker

losses that we could extract from further examination of the matrix. For further ease

of viewing, we produce a surface plot in Figure 2.4 of the matrix.
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Figure 2.4: 3D Expected Attacker Losses for A x D Skirmish

The surface plot in Figure 2.4 is informative of the general behavior of attacker

losses in A×D skirmishes. Notice, in instances of A×D in which the probability of

success is very high for the attacker, we generally see correspondingly small values

for expected losses. Conversely, in instances in which the probability of success was

found to be very low, we see the expected losses are very high relative to the size of

the attack, A.

We now examine the expected number of defending units to be lost in an A×D

skirmish. We illustrate the findings in a similar A×D matrix in Table 2.5 which shows

given an A×D skirmish how many units are expected to be lost by the defender, as

opposed to the attacker.
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Table 2.5: Expected Defender Losses for A×D Skirmish
HH

HHHHA
D 1 2 3 4 5 6 7 8 9 10

1 0.42 0.36 0.35 0.34 0.34 0.34 0.34 0.34 0.35 0.34
2 0.76 0.91 1.07 1.10 1.13 1.16 1.14 1.15 1.15 1.15
3 0.92 1.44 1.83 2.07 2.23 2.34 2.40 2.43 2.45 2.46
4 0.97 1.65 2.24 2.66 2.93 3.14 3.29 3.40 3.46 3.49
5 0.99 1.82 2.53 3.11 3.55 3.90 4.15 4.35 4.47 4.58
6 1.00 1.90 2.72 3.41 4.00 4.46 4.84 5.12 5.35 5.51
7 1.00 1.95 2.83 3.63 4.32 4.91 5.40 5.81 6.09 6.37
8 1.00 1.97 2.90 3.76 4.54 5.23 5.83 6.33 6.75 7.09
9 1.00 1.98 2.94 3.85 4.70 5.47 6.16 6.77 7.28 7.72
10 1.00 1.99 2.97 3.90 4.80 5.64 6.40 7.10 7.71 8.23

Similar to our examination of the expected attacker win percent and expected

attacker losses, we can examine the matrix for verification of our intuition and

consistency with our previous findings. The entry corresponding to A = 1 and D = 1

indicates an expected defender loss of 0.42 units. Recall, the probability of success for

the attacker for such an event is 0.42, thus the defender losing all of the D = 1 units

with probability 0.42. This result is consistent with previous findings. Also consider

the first row of the matrix. We see the expected defender losses tend to stabilize

across the first row, with very small losses. We expect few losses in these instances, as

D � A and A = 1 is almost a certain win for the defender, with very minimal losses.

We now produce a two-dimensional plot of the matrix in Figure 2.5 for select values

of the A×D skirmish with maximum values of A = D = 30 for a more broad view.
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Figure 2.5: 2D Plot of Expected Defender Losses for A x D Skirmish

Similar to previous examinations, we produce a surface plot in Figure 2.6 of the

associated matrix as well to further understand the shape of the data.
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Figure 2.6: 3D Plot of Expected Defender Losses

Neither Tan (1997) nor Osborne (2003) take hard stances on their findings to

dictate a recipe for appropriate play. Both authors suggest developing a personalized

strategy based on experience and preference. Our aim is to do precisely this; to

integrate the results of the probability of success findings from the initial Markov chain

analysis in future decision making. However, as previously noted these findings are

limited to the small-scale of an individual skirmish. We will find that many instances

of “success” as found by individual skirmishes will be representative of an ineffective

player strategy. Nevertheless, these are valuable considerations in the pursuit of

strategy development and serve as a powerful explanatory tool.

2.2 Assumptions for Naive Analysis

We now list the pivotal assumptions we make in modeling the RISK game and provide

justification for each. These assumptions aim to simplify the analysis while also
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maintaining reasonable interactions. While some assumptions made prove unrealistic

to how a human might act, we aim to build in measures to relax these assumptions once

a firm foundation has been established. The strategies implemented in our analysis

aim to provide a simple heuristic for game play. As suggested by Tan (1997) and

Osborne (2003), a player will prove far more successful by developing a strategy fitting

of them than attempting to rely entirely on an incomplete mathematical analysis. We

echo the advice made by these authors; that is, a personalized strategy which takes

mathematical findings into consideration when applicable under various assumptions

and contrived situations will likely outperform strict adherence to our findings.

• The first simplifying assumption pertains to limiting the number of players in

the game to two.

– The limit of two players drastically reduces the number of possible moves a

player can make while attacking, thus simplifying analysis.

– Additionally, the areas to place defending units from either drafting or

reinforcement will be drastically reduced.

• We assume each player rolls the maximum number of dice in skirmishes.

• We assume there is no limit to the amount of units a player can draft.

– While there are material constraints in real life, we will assume there is a

limitless supply of units in our RISK simulation(i.e. in real life there are a

finite number of game pieces).

• The next simplifying assumption in the course of the game is the manner in

which territories are given to the players.

– We will assume the 42 territories are distributed randomly to the two

players.

– That is, each player will receive 21 randomly selected territories at the

beginning of the game.
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• Our next assumption details how player will distribute their drafted troops.

– We assume players place all drafted units on territories which have an

enemy territory adjacent to it.

– We also assume that the players will evenly distribute their drafted units

between such territories.

∗ That is, drafted units will not be placed on territories surrounded by

their own team.

– This assumption ensures plenty of opportunities for attack will be available

while also ensuring the player will not develop masses of units isolated from

the other player.

• We will also assume, unless otherwise stated, that when an attack is available

to a player, that attack will be made in full force.

– Obviously, this assumption will lead to many haphazard engagements and

situations in which an otherwise intelligent player would not enter.

– We make this assumption as an aid to our assumption that units will

be placed on outermost territories to ensure the game does not become

stagnant.

– Additionally, this assumption will be relaxed and modified heavily in our

analysis, but serves as a very convenient basis.

• We assume that, in the event of a successful attack, a player advances with all

possible units.

– This assumption also serves the purpose of focusing the units toward the

most active areas of the board.

• We will assume players do not implement the reinforcement phase of the turn

to any extent.

– This will help to provide areas of relaxation in more advanced analysis.
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We define a player abiding by these assumptions to be a naive player. We

will continually make modifications to these assumptions in an attempt to increase

performance. The modifications will be based on statistical and graphical analysis of

simulations of game of RISK. The naive player will serve as a baseline player from

which we will measure improvement.

2.3 The Network Model

To observe these phenomena in mass quantity, we implement a discrete time dynamic

network model built to provide specific outputs of interest. The advantages of building

a computational model are vast. Foremost, we are able to produce far more data

than we would otherwise be able to collect by observing or participating in live

games. Essentially, we are able to produce as much data as our physical systems

allow. Secondly, our results become reproducible. Should another individual attempt

to implement or advance our procedures, our results will be consistent provided our

algorithm is followed precisely.

The dynamic network model, Mt, is detailed below.

We defineMt = {G0, Gt, At, Lt} to be our model after t graphical updates, where

t ≤ T ∈ N and T is the time in which the game ends. Each instance ofMT corresponds

to the completion of a single game of RISK as well as the information contained in

{G0, GT , AT , LT}.

The components are defined as follows:

1. The Underlying Graph, G0, refers to the RISK board translated into a graph.

The edges that constitute the edge set of G0 serve as a reference for which edges

can be added back into graphs Gt as the vertices change color, a procedure

outlined in the Graphical Updates Section. The vertices that make up the vertex
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set of G0 are the territories found on the RISK board.

2. The graph at time t, Gt, refers to the graphical embedding of the RISK board

after t graphical updates.

3. The List of Attributes, At, of the model at time t includes properties of the

RISK game, such as control of continents for each player, the draft count for

each player, and starting player.

4. The Unit List at time t, Lt, is a 42 ∗ 2 matrix in which each row corresponds to

a territory and each column represents a player.

2.3.1 The Underlying Graph

The underlying graph is represented as the RISK board translated into a graph. As

outlined in the introduction, the RISK board features 42 territories and 81 connections

between territories. We thus model the RISK board as a graph consisting of 42 vertices

and 81 edges, where the vertices represent territories and the edges represent routes

of travel on the RISK board. We will use this graph as an underlying graph from

which we reference edges and vertices as our procedures make changes to our graph.

We denote the original graph representing the unpopulated RISK board as G0. One

possible visualization of underlying graph of the RISK board is displayed below (Csardi

& Nepusz, 2006).
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Figure 2.7: Underlying Graph

It is worth noting that the embedding of the above underlying graph is planar.

While this is consistent with the RISK board representing a planar graph, the embed-

ding of the RISK board at any time t need not be planar. For ease of visualization,

planar embeddings will be implemented, though no part of our analysis requires such

an embedding.

2.3.2 Graphical Updates, Gt

We now move to describe the nature of the changes we will make to G0 in modeling

the RISK game.

Most important of these changes is the deletion and adding of edges. We consider

the color of vertices at time t, which is simply an indicator of player control. For

example, if we let the vertices controlled by Player 0 to be red and the vertices

controlled by Player 1 to be blue, the map will consist of blue and red vertices. Since

RISK only allows for attacks from a territory held by a player to another territory

held by the opposing player, edges between same color vertices are meaningless, since

no travel is allowed on these edges. We will delete these edges as they arise. The
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deletion of edges begins immediately upon the start of the game. Clearly, with every

attacking phase, and indeed every attack, there is a possibility of edges being deleted.

Additionally, when vertices become opposite in color, we will add the edges which

exist in G0, for if there is no such edge in G0, then no edge is possible.

It is important to note that in the event of a successful attack, the attacking

vertex and the recently conquered vertex will no longer share an edge, since the two

vertices will be like in color. However, the conquered vertex underwent a color change.

Given such a color change, there is a possibility that edges will need to be added from

this vertex. We can think of the edges existing in the graph and essentially turning

on and off based on the vertex colorings.

Each successful attacking event corresponds to a particular t ∈ N for count of

events, t. An update on our graph is an events that inserts or deletes an edge existing

in G0 (Gross, Yellen, & Zhang, 2013). Since G0 is undergoing updates, namely the

addition and deletion of edges, we create a graph Gt for t ∈ N where t corresponds to

a single successful attack. Thus, at the end of every successful attack we capture the

structural changes from graph Gt−1 to graph Gt.

Furthermore, a dynamic graph is a graph that undergoes updates of any form,

including the addition and deletion of edges (Gross et al., 2013). A dynamic graph

typically receives a sequence of updates, which we will index by t. In the sense that

edges can be added or deleted, we consider the RISK game to occur on a dynamic

graph. Each addition or deletion of an edge will correspond to a distinct time t ∈ N

in a graph Gt. We then let our graph G0 be a dynamic graph where Gt is as detailed

above. It is important to note that as a dynamic graph we will neither add nor

delete vertices for our implementation of RISK. Regardless of the current graphical

embedding, our board will always contain the original 42 vertices from G0. Simply

put, deletion of a vertex would correspond to the deletion of a country on the RISK
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board, which is an event that does not occur in the game.

Assuming our game terminates, a property we will discuss in The Piece-Wise

Ratio Strategy, the end of our game will occur at some time T corresponding to a

graph GT in which all vertices are the same color. Given that edges are deleted when

two territories share an edge in G0, our final graph GT will be completely disconnected

and thus have 42 vertices and 0 edges. Thus, for any game of RISK represented

graphically, the following ordered collection of graphs represents a game to completion:

C = {G0, G1, ..., Gt, ..., GT−1, GT} (2.3)

Each Gt can be both used to calculate graphical properties on an attack-by-attack

basis and translated into an adjacency matrix. The graphical properties aim to reflect

the structure of the graph. The structural changes will be shown to indicate clear

trends as the game proceeds to completion. Thus, our model has the potential to

examine the game on an attack-by-attack basis.

2.3.3 Attributes of the Game, At

As detailed above, each instance of an added or deleted edge will correspond to a

particular t ∈ N for successful individual attacks. With each change in t, various

game attributes will change. A brief description of each will follow. We consider the

continent control of each player. Specifically, we count each turn a player controls a

specific continent. Since there a six continents, each player will have six continent

control values. For clarification, the continent control counts are incremented any time

a player control a continent for an entire turn, the turns need not be sequential to

accumulate. Simply, we are interested in determining to what extent the control of

continents impact the outcome of the game.
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We consider the starting player of the game. We’ll denote the starting player as

a simple binary in which St0 indicates Player 0 started the game and St1 indicates

Player 1 started the game. We will track the starting player of each simulation and

make determinations on the effect of starting the game in regards to the final outcome

of the game. We are interesting in determining if starting the game, an event typically

left to chance, has a significant impact on the outcome of the game.

We denote the draft at time t of each player as d0t and d1t, respectively. We

use the maximum values of drafts for each player as our predictor the game by game

basis, D0 = max{d0t|t ∈ N} and D1 = max{d1t|t ∈ N}. In effect, this reduces the

dimensions of the data for the draft count while still preserving the overall theme of

the data. That is, a high max draft count will generally be indicative of a victory,

while low max draft count will generally be indicative of a loss.

We track the number of turns in a game, T . Recall, GT indicates a game which

has terminated. Additionally, we give each player their own attack counter, tP 0, tP 1,

respectively. Each turn can include multiple tP 0 or tP 1, since a player is not limited

to the number of attacks they can make in a turn, except by the availability of units.

2.3.4 The Unit List, Lt

The final structure of our model is the Unit List. The Unit List at time t, Lt, is a

42× 2 matrix indicating a count of units on each territory by player. Each row of the

unit list corresponds to a territory on the RISK board. The columns represent each

player. The entry in the matrix corresponds to the units on a specific territory held

by a certain player. The column of the player not holding the territory will have a

zero in the corresponding row entry. Thus, each row the the unit list will have one

positive integer and one zero.
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A brief example is demonstrated below.

Table 2.6: Unit List Example
XXXXXXXXXXXXTerritory

Player Player 0 Player 1

Siam 5 0
Greenland 0 15
Ukraine 7 0

From above, we see Player 0 holds Siam with 5 units and Ukraine with 7 units.

Also, notice Player 1 holds Greenland with 15 units. We see the opposing player has 0

units for their column when the other player holds the territory.

2.3.5 The Network Model Algorithm

Given all the described components of our network model, Mt, the algorithm for

producing a game as t→ T is as follows:

1. Territories are randomly and uniformed distributed between the two players on

the graph G0.

2. G1 is produced to reflect deleted edges based on the territory distribution

produced in (1).

3. The RISK Board is populated with the starting units given to the players.

4. The starting player is determined.

5. The Player determined in (4) begins turn.

6. Player drafts d units based on territory and continent possession.

7. The d units are placed uniformly on non-isolated vertices.

8. Player enters attacking phase.
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9. Player determines possible attacks given distribution of units on possible attack-

ing vertices.

10. Player attacks in accordance with appropriate assumptions.

11. For each unsuccessful attack, both attacking units and defending units on vertices

are updated.

12. For each successful attack,

• the vertex which was defending changes color;

• units on vertices are updated;

• edges are added and deleted appropriately; and

• Gt is changed to reflect the vertex and edge changes

13. Player ends turn.

14. Opposite player performs steps (6-13).

15. Steps 6-14 are repeated until time T .

• GT is an empty graph on 42 vertices and all vertices are the same color.

Our algorithm produces a graph at each time t, game attributes at each time t,

and a unit list at each time t, where t indicates individual graphical changes. Note,

the algorithm given is with respect to our assumptions in Assumptions for Naive

Analysis. The graph produced at time t can either be analyzed directly or converted

to an adjacency matrix for analyis.

To analyze the events of our model output MT , we consider two classes of

predictors. The first class of predictors, the game predictors, have been outlined as

contents of the game attribute list. These predictors aim to capture which player is

favored to win as the game progresses. The second class, the graphical predictors,

detail how the dynamic graph evolves into a completely disconnected graph at the
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end of the game.

Notice both sets of predictors have limitations. The graphical predictors detail

how the game is ending, but do not necessarily address which player is likely to

win. Conversely, the game predictors are far more likely to address which player has

the advantage, but fail to identify how the game graph is progressing structurally.

Together, the two sets of predictors produce a more complete view of the game than

either could individually offer.

2.3.5.1 Graphical Properties of Gt

This section is devoted to exploring some basic graphical properties of the graph which

constitute our collection of graphs C = {G0, G1, ..., Gt, ..., GT−1, GT}. As the game

elapses in time, we will examine the changes in the properties at each discrete time

t ∈ N. Recall each t represents an attack by a player, which can result in a graphical

change, but does not necessarily indicate a turn has elapsed (i.e. several player attacks

can constitute one turn). However, since we are modeling the evolution of a RISK

game as a discrete time dynamic graph, we have the ability to analyze each individual

graph of the sequence of graphs in detail.

The graphical properties outlined will later serve a predictors in our statistcal

modeling. Thus, we’ll produce predictor values for each t of our collection of graphs C.

To illustrate the use and trends of our predictors, we produce a sample game of RISK

purely for demonstrating these findings. The sample game produced a 42× (42 · 80)

matrix, and therefore consisted of 80 player attacks over the course of 17 turns. In the

plots of the predictors displayed below, we additionally produce vertical dashed lines

indicating the onset of turns 14 and 15 in each of the plots. We will see that many

of the predictors display interesting behavior in this interval. First, we’ll display the

graph at each of these turns below (Csardi & Nepusz, 2006). The game graph at turn
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14 is provided in Figure 2.8.

Player:
P0: 
P1: 

Territories: 
32
10

Units: 
70
10

Draft: 
12
3

Figure 2.8: Sample Game at Turn 14

Figure 2.8 shows the game has already progressed a great deal by turn 14. Player

0 has control of 32 territories, has 70 units distributed on them, and is currently

holding enough territories to draft 12 units per turn. Conversely, Player 1 has only 10

territories, with only 10 units distributed on them (hence, only one unit per territory),

and is holding enough territories to draft the minimum draft amount of 3 territories.
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Player:
P0: 
P1: 

Territories: 
39
3

Units: 
69
6

Draft: 
23
3

Figure 2.9: Sample Game at Turn 15

We see at the beginning of turn 15 given in Figure 2.9, the holdings of Player 1

have decreased substantially, from 10 territories to 3 territories. Note also that the

player has 6 units now. In the previous turn, the player lost 7 territories (and therefore

7 units, since each territory had 1 unit), and then started the turn by drafting 3 units.

Then from the previous turn, the player has (10− 7) + 3 = 6 units. The draft given

to Player 1 is unchanged at 3 units.

We proceed to explore the graphical measures we will implement while keeping

the previous graphs in mind for reference. The first graphical measure we explore

is the number of cut vertices in our graphs. Cut vertices are vertices whose removal

increases the number of connected components in a graph (Gross et al., 2013). The

components of a graph are given by maximally connected subgraphs. For example, in

the graph G0 the removal of the vertices corresponding to Indonesia or Siam would

create a disconnected graph as shown in Figure 1.1. So, G0 has two cut vertices. Note

that as discussed, G0 has received no removal of edges.
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However, for graphs Gt which have been colored and received appropriate edge

deletions, there will be many more cut vertices as the Gt graphs are in general more

sparse than G0. We include this measure to gauge the extent to which the graphs

have essentially fallen apart with each successive time. Since the final graph GT has

no edges, GT will have no cut vertices. Additionally, since G0 has two cut vertices,

we will see a spike in the count of cut vertices for times 0 < t < T , after which the

count of cut vertices will eventually fall to 0. Figure 2.10 is a plot of the count of cut

vertices of a single simulation of a game of RISK (Csardi & Nepusz, 2006). With

each graph of the graphical properties, in exclusion of the last properties, two dashed,

horizonal lines are provided. The two lines indicate the beginning of the 14th and 15th

turns, respectively. The aim of including these lines is to provided a sense in which

the respective graphical property changes during the turns discussed in Figure 2.8 and

Figure 2.9.
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Figure 2.10: Cut Vertices of Sample Game

The next graphical measure we include in our analysis is the average path length
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of the graph. The average path length is calculated by summing the lengths of the

shortest paths between all pairs of vertices and dividing by the number of possible

paths (Kolaczyk & Csárdi, 2014). The explicit equation is given by

∑
i 6=j

d(vi, vj)

n(n− 1) (2.4)

where d(vi, vj) is the distance of the shortest path between vertices vi and vj.

Clearly, for G0 this value will achieve its maximum, as subsequent Gt graphs will

by definition have less edges. Our aim in introducing the average path length as a

predictor is to capture the average distance the two players share in splitting up the

graph. Since only paths from opposite colors exist, the average path length will serve

as a measure of the length of alternating colored vertices. Additionally, the average

path length will decrease as t→ T , since GT contains no paths. Note, however, that

the average path length for an empty graph (e.g. GT ) is undefined. We simply truncate

that instance and observe the defined values, since deleting the single data entry for an

undefined average path length will not effect the overall trend of the data. Figure 2.11

is a plot of the average path length of our sample game of RISK (Csardi & Nepusz,

2006).
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Figure 2.11: Average Path Length of Sample Game

A quick review of the plots of the average path length and cut vertices will

likely convince the reader that these two quantities are highly correlated. The high

correlation between these two quantities which will serve as predictors is an important

point to notice in any statistical analysis. Such high correlation is frequently a cause

for concern and will lead the data analyst to reexamine the use of at least one of the

quantities. For the use of average path length and cut vertices, however, it is important

to note that these two measures fundamentally express different values, and the plots

will not necessarily look as similar as is shown in our example game.

We also examine the maximum degree of each of the graphs in the collection C.

The degree of a vertex is a basic structural property of a graph which is often used to

establish a simple notion of importance of a vertex. Since our graphs are undirected

and simple, the degree of the vertex is simply the number of edges incident on the

vertex(Gross et al., 2013). To find the maximum degree of any graph in C, simply find

the degree of all vertices and the largest value in that set corresponds to the maximum



2.3. THE NETWORK MODEL 39

degree of the graph which can be expressed as

∆(G) = max {deg(vi)|vi ∈ V (G)} (2.5)

Examination of the graph for G0 produced in Figure 2.7 shows a maximum

degree of 6. We expect this value to trend downwards, since by definition GT will

have maximum degree of 0 and isolated vertices have degree 0(Gross et al., 2013).

Again, the aim of including this measure is to capture how the graphs fall apart over

time. We include a plot of the maximum degree for our sample game of RISK in

Figure 2.12 (Csardi & Nepusz, 2006).
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Figure 2.12: Maximum Degree of Sample Game

We next examine the independence number as a property of interest. The

independence number of a graph is the maximum number of pairwise non-adjacent

vertices in the graph (Gross et al., 2013). While this result can be found manually or

computationally, we opt to find the independence number computationally given the
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size of G0 and the number of configurations of graphs in C. To manually calculate

the independence number of a graph G first select a vertex set X ⊆ V (G) such that

no edges exist between vertices in X. The largest cardinality of all possible sets X

indicates the independence number of G. The independence number of G0 is 16. This

indicates that we can select 16 vertices from G0 which will all be pairwise disjoint.

Since Gt becomes more sparse as t→ T the independence number will generally trend

upwards as the game progresses. The final graph, GT will have an independence

number of 42 since each vertex is its own component in this graph. We use this

measure to again capture the underlying changes in the graphical structure. The plot

of the independence numbers for our sample game is provided in Figure 2.13 (Csardi

& Nepusz, 2006).
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Figure 2.13: Independence Number of Sample Game

Another graphical measure we include is graph density. The graph density is

the ratio of the number of edges in a given graph to the number of edges that could

possibly exist in a complete graph of the same order. Since all graphs in C are simple
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and undirected, the graph density is given by

2|E(G)|
|V (G)|(|V (G)| − 1) (2.6)

where |E(G)| and |V (G)| are the size of the edge set and vertex set of a graph

G, respectively. Since G0 will contain more edges than any other graph for t > 0, we

expect the graph density to display a decreasing trend as |E(G)| will trend downward

and |V (G)|, and thus |V (G)|(|V (G)| − 1), will remain constant. Additionally, GT has

zero edges and will then have a graph density of zero. Figure 2.14 is a plot of the

graph density for our sample game of RISK (Csardi & Nepusz, 2006).
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Figure 2.14: Graph Density of Sample Game

Next, we define a special class of graphs, the 4-Vertex Connected RISK Graphs,

which serve as interesting subgraphs for any graph in C. The graphs of interest are, as

the name suggests, connected graphs on 4 vertices. Given our model definition, these

graphs given in Figure 2.15 will exhibit a proper coloring of only two colors. One
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possible subgraph on four vertices is a cycle on four vertices (C4), which will indicate

instances in which each player has two territories which are themselves connected to

two enemy territories connected to the original territories (Gross et al., 2013). The

count of C4 subgraphs will serve to measure how mixed the two players are on the

board. Additionally, a path on four vertices (P4) could exist which indicates a chain

of length 4, oscillating between Player 0 and Player 1 (Gross et al., 2013). Again,

instances of P4 subgraphs will indicate the graph is still very mixed between the two

players. The final possibility is a bipartite graph (K1,3), which features one vertex

essentially surrounded by vertices held by the opposite player. Examples of the three

4-Vertex Connected RISK Graphs are provided in Figure 2.15.

4 Vertex Cycle 4 Vertex Path 4 Vertex Bipartite

Figure 2.15: 4 Vertex Connected RISK Graphs with Possible Coloring

Naturally, as players get more established in areas of the graph or as the game

progresses and one player’s presence diminishes, the count of these graph will decrease.

Initially, the graph G0 has 455 instances of these subgraphs. Each graph Gt for

0 < t < T will have fewer of these subgraphs than G0 since G0 is the most dense

graph in C. GT will have zero 4-Vertex Connected RISK Graphs since it has zero

edges and is completely disconnected. Below we plot the count of 4-Vertex Connected
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RISK Graphs of our sample game (Csardi & Nepusz, 2006).
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Figure 2.16: 4-Vertex RISK Graphs of Sample Game

We include a count of the number of components of our individual graphs; where

a component is a maximally connected subgraph of the current graph Gt (Gross et

al., 2013). Clearly, G0 consists of one component, as any vertex can be reached from

another(i.e., G0 is connected). Graphs Gt typically consist of several components, as

the deletion of edges makes certain vertices unreachable from others. In the end, GT

consists of 42 components. As a game elapses, we see an increasing trend from our

graph having only one component, representing the connected G0 graph, to the 42

components of GT . Below we include a plot of the count of components for a single

simulation of RISK (Csardi & Nepusz, 2006).
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Figure 2.17: Component Count of Sample Game

We additionally include the diameter of our graphs in C. The diameter of a

graph G is defined by

max{ε(v)|v ∈ V (G)} (2.7)

where ε(v) is the maximum distance between v and any other vertex in G (Gross

et al., 2013). Except for G0, graphs Gt will feature diameters made up of territories

held by alternating players. Note that for our model, a graph Gt can be specified by

Gt =
K⋃

k=1
Ck = C1 ∪ C2 ∪ C3 ∪ ... ∪ CK (2.8)

where Ck is a component of Gt. We consider the diameter of components of

the graphs Gt for 0 < t ≤ T separately since GT is nearly always more than one

component. Technically, from Equation 2.7 when Gt has more than one component we
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have diam(Gt) =∞. So, it is important to consider the components of Gt separately.

We report the diameter of the graph Gt as the diameter of the component of Gt with

the largest diameter given by

max{max{ε(v)|v ∈ V (Gi)}} (2.9)

Thus, stages in the game in which the two players are relatively separated,

whether one player is nearly victorious or each player holds their own portion of the

map, will have relatively short diameters. Games in which the territories of the two

players are more mixed will feature larger diameters, which can be seen as paths of

territories of alternating color. Furthermore, since GT is all one color and features zero

edges, all components of GT will have diameter zero, thus the diameter will be zero.

We then expect a downward trend in the diameter values. The plot of the diameter

values for our sample game of RISK is displayed in Figure 2.18 (Csardi & Nepusz,

2006).
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Figure 2.18: Diameter of Sample Game

The next two graphical predictors are graphical centrality measures. We include

the eigenvector centrality and the betweennesss centrality. The essence of the centrality

measures is to determine the relative importance of vertices in a graph based on how

central a vertex is in regards to the entire graph. While intuitively simple, the two

measures we include determine the importance of a vertex through mathematically

different procedures.

Let’s begin with the eigenvector centrality as a measure for our analysis. The

eigenvector centrality scores of a graph require viewing the graph as its adjacency

matrix. The interpretation of the eigenvectors is, in general, that higher scores

correspond to vertices which are connected to many other vertices, which themselves

are connected to many other vertices (Kolaczyk & Csárdi, 2014). Specifically, the

individual eigenvector centrality meausures are given by solving
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xv = 1
λ

∑
u∈V (G)

auvxu (2.10)

where x = [x1, x2, ..., xn] and aij corresponds to the entries in the adjacency

matrix, A(Gt) = (aij). The entry xi corresponds to the eigenvector centrality of each

vertex i (Gross et al., 2013). A plot of the eigenvalues of the eigenvector centrality

scores for our sample game is displayed in Figure 2.19 (Csardi & Nepusz, 2006).
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Figure 2.19: Eigenvector Centrality of Sample Game

The second centrality measure, the betweenness centrality, is the final measure

of a graph for our analysis. The betweenness centrality can be applied to both edges

and vertices, though in keeping with our stated desire to determine the centralities of

vertices, we implement the vertex betweenness measure (Kolaczyk & Csárdi, 2014).

The vertex betweenness is a measure which counts the number of shortest paths

through a particular vertex (Gross et al., 2013). That is, for any vertex v ∈ V (G),

the betweenness centrality of v is given by
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CB(v) =
∑

s 6=v 6=t

σst(v)
σst

(2.11)

where σst(v) is the count of shortest paths between distinct vertices s, t, passing

through a vertex v(Gross et al., 2013). Since the graphs Gt are changing with

each t, the betweenness measure is expected to change as the graph evolves. The

betweenness measure for our sample game is displayed in Figure 2.19. Unlike the

eigenvector centrality which reduces nicely to an eigenvalue(and all of our other

graphical predictors which produce a single value), the betweenness centrality provides

a value for each vertex. To simplify this data, we take the mean of the betweenness

measure for each game. We find that the mean value is reasonably representative of

the measure in general, and will produce results in the following section to substantiate

this claim further. The plot of the betweenness centrality is shown in Figure 2.20

(Csardi & Nepusz, 2006).
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Figure 2.20: Betweenness Centrality of Sample Game
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Since each graph, Gt, features changes from the previous Gt−1 graph, the

discussed graphical features will capture changes in graphical structure based on the

action of the player. For example, a brief review of Player turns 1 to 20 on the

predictor graphs show very small changes. This is indicative of a game being relatively

uneventful at the beginning. We see that once a player amassed sufficient units, the

game eventually snowballed into one player winning and we saw a corresponding

change in the predictor plots. We are essentially measuring how and with what speed

the game board graph is shifting towards an empty graph (i.e. E(G) = ∅). The

implementation of predictors with the capacity to measure the effects of the graphical

changes in addition to the first class of predictors, the game predictors, will help to

provide a diverse view of the game.

With exception of the betweenness centrality, each of the remaining graphical

predictors is further reduced in size by numerically integrating the data by way of

Simpson’s method (Curran, 2013). The objective here is to essential reduce each graph

down into a single value. To be clear, we do sacrifice the ease of interpretation for

the ease of modeling in this regard. For example, we present no interpretive value

towards the integral of the eigenvector centrality curve for our dynamic graph. Such a

value is unlikely to represent an intuitive notion of the status of the game to a casual

observer as a game predictor such as Max Draft for Player 0 might. We suggest no

interpretation for these values, we instead aim for a predictive capacity. The numerical

integration of these parameters allows for a concise summary of the measures. Granted,

the value from the integral will not be unique; that is, some other configuration of the

parameters as time elapses could produce the same value (e.g., a long game with small

values could produce a value similar to a short game with high values). However, from

implementing these measures on many data sets, these graphs typically do not appear

substantially different. Additionally, the benefit from implementing this procedure is

vast, namely the reduction in the size of our data. For a game of T player attacks,
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we produce T graphical measures and game measures, which require the storage and

access of the associated adjacency matrix and the unit lists. For example, the sample

game we’ve implemented is stored in 42× (42 · 80) matrix, which occupies roughly

1.1Mb of disk space for a single game. With the aim of simulating tens of thousands

of games, maintaining a value for each graphical change is impractical. Thus, we

simply associate each game with an integrated value of our predictor curves. The aim

is to create the association that the “amount” of area under the curve of the specific

predictor is indicative of a certain graphical scenario which is itself indicative of the

state of the game.

2.3.5.1.1 Review of Predictors

We provide a table of the game predictors and graphical predictors in Table 2.7.

The table serves the purpose of summarizing the predictors as well as explicitly

detailing the types of values that can be taken on by each as well as providing

convenient abbreviations for each.
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Table 2.7: Predictors
Predictor Classes

Game Predictors Graphical Predictors
Predictors Format Predictors Format

Player 0 Max Draft D0 ∈ N Graph Density Integral
∫
GD ∈ R

Player 1 Max Draft D1 ∈ N Component Count Integral
∫
CC ∈ R

Turn Count T ∈ N Diameter Integral
∫
D ∈ R

Player 0 Attack Count A0 ∈ N ∪ {0} Eigen Centrality Integral
∫
EC ∈ R

Player 1 Attack Count A1 ∈ N ∪ {0} Independence Number Integral
∫
IN ∈ R

Starting Player St0, St1 ∈ {0, 1} Maximum Degree Integral
∫
MD ∈ R

Player 0 Africa Count Af0 ∈ N ∪ {0} Cut Vertex Integral
∫
CV ∈ R

Player 1 Africa Count Af1 ∈ N ∪ {0} Average Path Length Integral
∫
APL ∈ R

Player 0 Asia Count As0 ∈ N ∪ {0} RISK Graphs Integral
∫
RG ∈ R

Player 1 Asia Count As1 ∈ N ∪ {0} Mean Betweenness µ(Bet) ∈ R
Player 0 Australia Count Au0 ∈ N ∪ {0}
Player 1 Australia Count Au1 ∈ N ∪ {0}
Player 0 Europe Count Eu0 ∈ N ∪ {0}
Player 1 Europe Count Eu1 ∈ N ∪ {0}
Player 0 N. America Count NA0 ∈ N ∪ {0}
Player 1 N. America Count NA1 ∈ N ∪ {0}
Player 0 S. America SA0 ∈ N ∪ {0}
Player 1 S. America SA1 ∈ N ∪ {0}

2.3.5.2 A Toy Example of the Algorithm

We’ll now produce an example of our algorithm on a reduced scale featuring three

non-descript vertices. The underlying graph is displayed in Figure 2.21 (Csardi &

Nepusz, 2006). At each iteration of the algorithm, the graphical predictors can be

produced. We forgo providing that data as we have previously demonstrated the

predictors at full scale.
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Sample Game Underlying Graph
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Figure 2.21: Underlying Graph of Example Game

1. Territories are randomly and uniformed distributed between the two players.

We next populate the underlying graph with players and units. We’ll ignore the

quantities of the draft units of for simplicity.

2. G1 is produced to reflect deleted edges based on the territory distribution

produced in (1).

3. The RISK Board is populated with the starting units given to the players.

4. The starting player is determined.

5. The Player determined in (4) begins turn.

6. Player drafts d units based on territory and continent possession.

7. The d units are placed uniformly on non-isolated vertices

8. Player enters attacking phase.

9. Player determines possible attacks given distribution of units on possible attack-

ing vertices.

10. Player attacks in accordance with appropriate assumptions.

11. For each unsuccessful attack, both attacking units and defending units on vertices

are updated.

12. For each successful attack,
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• the vertex which was defending changes color;

• units on vertices are updated;

• edges are added and deleted appropriately; and

• Gt is changed to reflect the vertex and edge changes.

13. Player ends turn.

The graph featuring the above changes is displayed in Figure 2.22. Note, the

edge found in the underlying graph between vertices 1 and 2 is no longer present, as

the vertices share a color.

Sample Game With Teams Assigned

1

2

3

Figure 2.22: Example Game at t = 1

The associated unit list is given in Table 2.8. Notice, vertices 1 and 2 belong to

Player 0 and there is not edge between vertices 1 and 2. Such an edge does exist in

G0, but it has been deleted due to the vertices belonging to the same player (i.e., they

are the same color).

Table 2.8: Unit List of Example Game at t = 1
XXXXXXXXXXXXTerritory

Player Player 0 Player 1

1 10 0
2 1 0
3 0 5
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14. Opposite player performs steps (6-13).

The implementation of steps 6-13 produce the graph in Figure 2.23.

Sample Game With Teams Assigned

1

2

3

Figure 2.23: Example Game at t = 2

The graph in Figure 2.23 above corresponds to the unit list produced in Table 2.9.

Table 2.9: Unit List of Example Game at t = 2
XXXXXXXXXXXXTerritory

Player Player 0 Player 1

1 10 0
2 0 3
3 0 1

We now let Player 0 make successful transitions onto vertices 2 and 3 at time

t = 3 and t = T .

14. Opposite player performs steps (6-13).

15. Steps 6-14 are repeated until time T .

• GT is fully disconnected and all vertices are the same color.

A successful transition onto vertex 3 is given in Figure 2.24.
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Sample Game At t = 3

1

2

3

Figure 2.24: Example Game at t = 3

The unit list in Table 2.10 represents the change in units from the previous turn.

Table 2.10: Unit List of Example Game at t = 3
XXXXXXXXXXXXTerritory

Player Player 0 Player 1

1 1 0
2 0 3
3 7 0

We now allow Player 0 to make a successful transition onto vertex 2. Notice,

given the successful transition made by the Player 0, we have deleted the edges which

existed in the Example at t = 1. We now have a graph with zero edges in Figure 2.25,

which corresponds to t = T .
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Sample Game At Game End

1
2

3

Figure 2.25: Example Game at t = T

The corresponding unit list is produced in Table 2.11.

Table 2.11: Unit List of Example Game at t = T
XXXXXXXXXXXXTerritory

Player Player 0 Player 1

1 1 0
2 5 0
3 1 0

Notice, the first column of Table 2.11 contains all non-zero entries, and therefore

the second column contains all zero entries. This corresponds to Player 0 winning the

game or, equivalently, holding units on all territories.



Chapter 3

Methodology: Strategy

Implementations

3.1 Strategy & Simulations Overview

Given our computational model Mt, we proceed to implement simulations featuring

various player strategies we define. The general procedure of our work is to define

a strategy and perform simulations using that strategy. In all, we will define three

distinct strategies and various sub-strategies. We also perform simulations in which

various strategies are deliberately given continents to measure performance increases

and changes both across and between strategies.

We perform 500 simulations for situations in which we do not require a high

degree of accuracy. A sample size of 500 simulations produces a large standard error.

However, we produce this data to simply observe trends, which does not require a

detailed view of the data. Throughout our simulations, there are both portions where

we are simply observing a trend or we desire to produce more data in areas of interest.

If a trend of interest or area of focus is found, we simulate those portions more heavily.

57



3.2. THE NAIVE STRATEGY 58

On areas where we need more granularity or more certainty in our analysis, we

increase the sample size considerably. For such simulations, we desire our simulations

to estimate the true proportion p to the accuracy of the outcome of the game with

standard error less than or equal to 0.01 from a sample of size n (Gelman & Hill,

2007). Given our binomial outcome, the standard error of the mean is:

√
(p(1− p)/n) (3.1)

Thus, for the population parameter we have

σ =
√

(p(1− p)/n) (3.2)

Additionally, we can use p = 0.5 to produce an error bound as this value is lowest

possible value of p(Gelman & Hill, 2007). Then by using p = 0.5 in our equation for

standard error, we find

SE =
√

1/2(1− 1/2)/n

=
√

1
4n

(3.3)

By solving for n, we find n = 1/4SE2. We allow for a standard error SE = 0.01,

or 1%, and thus we require a sample size of n = 2500 simulations for a margin of error

of approximately 2SE, or ±2%.

3.2 The Naive Strategy

With a thorough outline of the procedures of RISK and some rudimental findings on

skirmishes, we define the naive strategy to be a strategy in which a player acts in full
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accordance with assumptions in Assumptions for Naive Analysis Section. Strategically,

the naive player places units uniformly and attacks as much as possible. The naive

strategy essentially requires A > 0. For purposes of consistency, the naive strategy

holds under any consideration in which A ≥ 0, where A = 0 is essentially a null event.

It is important to note that the naive strategy takes no information regarding the

opposing player into account. This strategy will result in a high amount of activity,

but not necessarily productive results.

3.2.1 Naive Strategy vs. Naive Strategy

A natural pursuit when defining the naive strategy is to explore the outcome of

implementing two naive strategy players against each other. Thus, we use the naive

strategy for both players of our game. We simulate 2500 games implementing the

assumptions made for our analysis. Key of these assumptions is the layout of the game

board at the onset of the game. In these simulations, neither player will deliberately

receive a continent. Obviously, a player may still have a continent at any point in

the game, including the beginning, given the random assignment of territories at the

onset of the game. These simulations serve as a baseline for understanding the several

effects. From these simulations, we find the win probability of Player 0 to be 0.497 and

thus 0.503 for Player 1. With identical strategies and implementations, each player

has a probability of winning of essentially 50%.

This result will help to understand later effects of interest including the impact

of continent bonuses and the performance of the naive strategy under constrained

situations. We will proceed with simulations in which players are given continent

control in later sections.
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3.2.2 Naive vs. Naive with Continent Control

This section serves the purpose of detailing the outcomes of simulations in which

a naive player is given complete control of a continent at the onset of the game.

One simulation entails an entire game of RISK from start to finish. In an attempt

to understand the impact of continent bonuses on the outcome of the game, this

preliminary analysis features a naive player opposing another naive player which is

given a specified continent in each simulation. Specifically, these simulations center

around Player 1 deliberately being given complete control of an individual continent

at the onset of the game. Naturally, the player which is given a continent may not

start the game with the continent. Simply put, Player 0 may start the game and

invade any portion of the continent given to Player 1, as the starting player is still

determined randomly in these simulations. The purpose of these simulations is to

show that, while the continent bonus is not a guarantee, guaranteed possession of a

continent at the onset of the game increases the odds of victory to varying degrees.

We also briefly review relevant continent information in Table 3.1.

Table 3.1: Continent Information
Continent Bonus Size Entries
N. America 5 9 3
S. America 2 4 2
Australia 2 4 1
Europe 5 7 4
Africa 3 6 3
Asia 7 12 5

For each continent set of simulations we simulate 2500 games. Again, this

provides us with an acceptable standard error of 0.01. Table 3.2 features the results

of these simulations in addition to a column dedicated to restates the results of the

naive versus naive simulations previously produced. The first row of Table 3.2 is the

probability of winning for Player 0, which is given no continents. The second row
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of Table 3.2 is the probability of winning for Player 1, which is given the continent

as indicated by the appropriate column. The third row of Table 3.2 indicates the

advantage Player 1 has by assuming control of the relevant continent or layout.

Table 3.2: Naive Performance with Continents Given
``````````````̀Strategy

Continent None Asia N. America Australia S. America Africa Europe

Player 0 0.503 0.456 0.390 0.378 0.339 0.267 0.254
Player 1 0.497 0.544 0.610 0.622 0.661 0.733 0.746
Advantage -0.006 0.088 0.22 0.244 0.322 0.466 0.492

We review these results in context for each continent below.

Asia:

Asia provides the largest continent bonus, so we might expect substantial impact

on the outcome of the game. However, the probability of success for Player 1 starting

with Asia is 0.544, which is slightly higher than the probability of success when no

continent is given. There appears to be relatively little impact on the probability that

a player wins when given Asia at the onset of the game.

We expect two factors to be at play here. First, Asia is a very large continent,

featuring 12 territories. Maintaining such a large landmass at the beginning of a game

will prove very difficult when resources are especially limited. Second, Asia has many

entry points, as shown in the Table 3.1, from which a player could pose an attack in

the event that Player 1 does not start the game, thus leading to the event that Player

1 did not actually receive the Asia continent bonus despite being given the continent.

It seems likely that when Player 1 does not start the game, Player 1 will likely lose

control of Asia and thus not receive the continent bonus on their first turn. However,

this analysis should be not seem as a criticism on control of Asia as a method of

increasing the probability of success. Though we found that onset control of Asia for

a naive player does not substantially increase the odds of victory, it is likely that small

incremental advantages similar to this finding produce substantial results for more
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advanced players.

Australia:

We see drastically improved win percentage over the performance of the base

scenario of no continents given. With a win probability of 0.622 for Player 1, this is far

above the win percentage of Player 1 without a continent given. While the bonus for

Australia is relatively small, a mere 2 units, it is important to note that Australia has

only 4 territories and a single entry point. Thus, defending Australia, even in light of

the naive strategy, is substantially less cumbersome than defending Asia, for example.

Additionally, in the event that Player 1 loses control of Australia it is likely Player

1 will maintain pockets of units in the region, thus making recapture substantially

easier.

North America:

For North America, we find the probability of a Player 1 win is 0.610. In light

of our findings regarding Australia and Asia, this result is in line with expectations.

North America is larger and more difficult to defend than Australia, so we expect the

effect of the bonus to be less pronounced, which with a slightly smaller increase in

win percentage, the effect is less pronounced. Also, North America is smaller and

less difficult to defend than Asia, so we expect of the bonus to be more pronounced.

Furthermore, with a bonus of 5 for North America, between the 2 and 7 for Australia

and Asia, respectively, this win percentage is not particularly surprising.

South America:

We see when South America is given to Player 1 we have win probability of

0.661. For context, this probability is between that of Australia, at 0.62, and Africa,

at 0.733. South America has two entries which is less than the three entries in North

America, so from this perspective we expect the probability of winning to be higher
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when given South America. Notably, however, South America is the same size as

Australia and contains one more entry points, which would presumably make holding

South America more difficult and decreasing the odds of success, a result which we do

not find.

Africa:

We see Player 1 has a 0.733 probability of victory when given Africa at the

onset of the game. While we do expect improvement upon our base case, this result

is peculiar. Africa has 6 territories and 3 entry points. The six territories are more

than that of say, Australia or South America, and the number of entry points is larger

than those as well. Overall, Africa has a relatively moderate number of points of entry

and a fairly small bonus associated with it. An attempt at understanding this result

could be that Africa is relatively central in the map and will thus be involved in much

dispute. Perhaps also that Africa is a relatively deep continent in that full invading

Africa requires moving down the continent a substantial portion, that is to say that

all of the entry points are at the top of Africa.

Europe:

Of all the continents, possession of Europe presents the highest odds of victory

with a probability of 0.746. Recall, Europe is a relatively large continent with 7

territories and a bonus of 5 units. Furthermore, Europe has 4 entries which are

relatively evenly spaced, one being from each of the other continents except Australia

and South America. The high win probability associated with Europe is unexpected,

much like we found with Africa. We suspect this result is an artifact of the position of

Europe in the map. When a player holds Europe (and acts aggressively), it is unlikely

that an opposing player will successfully hold a connected continent. Additionally, the

continents not connected to Europe, which are South America and Australia, provide

a bonus of only 2 units.
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3.3 The Ratio Strategy, An Adjustable Approach

A natural progression of strategies upon the examination of the Markov chain approx-

imation to skirmishes is to simply allow a player to attack when the units available to

attack, A, are some fixed multiple, r higher than the number of units the opponent

has available to defend, D. We will refer to this strategy as the Ratio Strategy and

denote the corresponding ratio as rP , where P ∈ {0, 1} indicates Player 0 or Player 1,

respectively. Note that this strategy does not rely on repeatedly sampling to produce

the desired A × D probabilities. Thus, this procedure is far less computationally

exhaustive than relying on continual Markov chain simulations for decision making,

but relies on the reasoning found by the Markov chain approximation to skirmishes.

Furthermore, the naive strategy effectively allows attacks when A > 0 for some

potential attacking force of size A. We reframe the strategy in terms of both A and

D such that A > 0 ∗ D. We then modify this strategy to only allow attacks when

A ≥ r ∗D, where r is some fixed ratio and D is the number of defending units on the

opposing territory of interest. Clearly, when r = 0 the expression A ≥ r ∗D reduces

to the naive strategy.

From the Markov chain approximation to skirmishes results, we see that when

A ≥ D the odds of a successful attack are generally higher for sufficiently large A,

as previously discussed. While this result is not particularly surprising, we will see

a variety of outcomes based on possible selections of r. We will explore 81 possible

values of r, where r ∈ [0, 20] by increments of 0.25. This modifiable method will serve

as a convenient basis for selecting when a player will attack under various restrictions.

While we do not expect the ratio strategy to be our final improvement in strategies

or to accomplish a game theoretic optimal solution to RISK, as it is inherently exploitive

in nature, it will serve as an important step toward understanding how to implement
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a reasonably competent heuristic playing strategy. The objective of the following

section is to explore how this range of values of r produce corresponding performance

changes against a naive player.

3.3.1 Naive Strategy vs. Ratio Strategy

To further examine the performance of the heuristic ratio strategy, we simulate games

of RISK in which the ratio strategy for Player 1 is implemented against the naive

strategy for Player 0. The ratio strategy takes on values of r such that r ∈ [0, 20]

by increments of 0.25. The naive strategy is a special case of the ratio strategy with

r = 0.

Each value of r is simulated for 500 games. Admittedly, the constraint of 500

simulations permits a great deal of error in the mean of these samples, an issue we

address when examining the findings in more detail in the following section. Figure 3.1

displays the performance, by ratio value, for the ratio strategy player against a naive

strategy player.
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Figure 3.1: Naive Strategy vs. Ratio Strategy

The trend of the plot in Figure 3.1 is clear. For very low values of r, the

performance of Player 1 and Player 0 is roughly equivalent. This result is expected,

as low values of r indicate A ≥ r ∗D ≈ 0 ∗D, which reduces to the naive strategy.

Naturally, as r increases in values near 0, the performance changes. At roughly a value

of r1 = 0 we see a spike in the performance of the ratio strategy. The performance

continues to increase until we reach r1 ≈ 3. Following this peak, the performance

drops at a rate similar to the increase until r1 ≈ 5. For r1 > 5, the performance

continues to drop, albeit at a slower rate. We display data until r1 = 20, at which

points the probability of success for the ratio strategy has fallen to nearly 0.10.

From Figure 3.1, we can see that overly aggressive play against a naive player

effectively becomes a game of naive strategy versus naive strategy. Alternatively,

overly defensive play, indicated by large values of r1, essentially becomes a game in

which the ratio player performs poorly, likely the result of the naive player making

steady gains while the ratio player waits “too long” until an unrealistic criterion is

met. Between these two situations, we have intermedate values of r1 in which the
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performance of the ratio player outperforms the naive player with a win probability

reaching as high as nearly 80%. These intermediate values of r1 are thus of particular

interest as they would likely provide the player a good heuristic strategy against an

average or weak player. We devote the next section to examining these values more

closely.

3.3.1.1 Ratio Strategy Optimization in Ratio Strategy vs. Naive Strategy

In this section we aim to provide a more granular look at the range of ratio values

which appear to contain a maximum for the performance of Player 1 implementing

the ratio strategy against Player 0 implementing the naive strategy. To achieve this

more granular view, we examine the range of r1 values of [0.95, 4.5] based on our

examination of the Naive Strategy vs. Ratio Strategy. Furthermore, we increment

values of r1 by 0.05, as opposed to increments of 0.25 on the range of r1 values in

[0, 20] in our previous examinination of the two players interacting.

Additionally, we perform 2500 simulations for each ratio value, instead of the

prior 500 simulations for the global outlook, to ensure we reduce error in our sample

sets, as previously discussed. Below we display a plot of the data collected through

these simulations.
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Figure 3.2: Naive vs. Ratio, Optimized by Perspective of Ratio Player 1

Figure 3.2 confirms our initial thoughts that this range of ratio values contains a

maximum. Admittedly, the natural variance in our data does not allow for extreme

values to be extracted with certainty, nor is that our intention. The collected data

serves as a guideline for defining various player strategies within the ratio strategy.

We thus define the three ratio strategy categories as follows:

Table 3.3: Ratio Strategy Styles
Player Strategy Ratio Range Probability of Win
Aggressive [0, 1.5] ≤ 0.70
Balanced (1.5, 4) [0.70, 0.80]
Defensive [4, ∞) ≤ 0.70

Given these definitions, we will further explore the performance of the ratio

strategy by again assessing performance of a player when continents are provided

to the player. The next section will focus on the performance of the ratio strategy

for r1 = 2.5, which will be termed as the Optimized Ratio Strategy when a naive
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strategy opponent is given continent control as was simulated in the following section.

Additionally, we will explore alternate strategies and assess the definitions of these

categories of players from various perspective.

3.3.1.2 Optimized Ratio Strategy vs. Naive Strategy Given Continents

We now simulate the ratio strategy at r1 = 2.5 against the naive strategy (r0 = 0)

given continent control. These simulations are similar to the previous simulations

featuring the naive strategy against the naive strategy with continents. We found

above that the ratio strategy at r1 = 2.5 wins approximately 77% of games against a

naive strategy player when no continents are deliberately given.

We are interested in finding where the performance of the ratio strategy player

lies between the simulations of how the naive player performs against another naive

player with continents, and how the ratio strategy player performs against the naive

player without continents. A summary of these simulations is presented in Table 3.4 .

Table 3.4: Optimized Ratio Strategy vs. Naive Strategy with Given Continent
``````````````̀Strategy

Continent None Asia N. America Australia S. America Africa Europe

Optimized Ratio 0.769 0.58 0.519 0.652 0.626 0.521 0.386
Naive 0.231 0.42 0.481 0.348 0.374 0.479 0.614
Difference 0.538 0.16 0.038 0.304 0.250 0.042 -0.228

Recall that the optimized ratio strategy has a win percentage of approximately

77% against the naive strategy given no continents. From Table 3.4 we see the

possession of continents certainly did aid the naive player. However, for control of

Asia, North America, Australia, South America, and Africa given individually, the

optimized ratio player still outperformed the naive player. Obviously, the performance

of the optimized ratio player dropped significantly below the 77% win percentage it

previously held. Only the possession on Europe as the continent given was enough

to increase the win percentage of the naive player above a probability of 0.5. In
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this instance, the optimized ratio player had a drastic performance decrease, with a

percentage of only 39%.

3.3.2 Ratio Strategy vs. Ratio Strategy

The next step in evaluating our proposed strategies is to cross the performance of

the ratio strategy against another player implementing the ratio strategy. We define

a cross of the performance of two ratios r0 and r1 to be Pr(Win|{Po(r0), P1(r1)}),

where Pi(ri) represents Player i implementing the ratio strategy with ratio ri. Note

that for an M × N matrix of M ordered r0 values and N ordered r1 values, the

Pr(Win|{Po(r0), P1(r1)}) corresponds to the r0 × r1 element of the M ×N matrix.

We quickly discover that many implementations of particular ratio value combi-

nations of ratio Strategy for Player 0 and ratio strategy for Player 1 do not terminate

or terminate infrequently with extremely protracted runtime and amassed units. Es-

sentially, certain ratio values for a player are too defensive and thus attack very little.

When matched with a player who acts comparably, both players simple stockpile

units until either one has enough units to pursue an attack or the game does not

end as both players continue to only draft units. In the latter case, we simply state

the game does not terminate. In the former case, it is possible to contrive games

in which the player(s) will eventually attack. This scenario happens after drafting

thousands, frequently tens of thousands of troops, one player arrives at a position to

attack; this is very rare. We display one possible turn of a game in such a scenario in

Figure 3.3. The game features Player 0 using r0 = 20 and r1 = 5. The ratio values

were chosen to illustrate the point and, as we will see, are part of a much larger portion

of non-terminating ratio combination.
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Figure 3.3: Example of Non-Terminating Game

We have no interest in continuing to model this unrealistic and impractical

scenario as actual players would likely never be this defensive simultaneously. Instead,

we choose to adjust our ratio strategy in a manner consistent with prior analysis in

producing favorable results. We define a game to be non-terminating if at least one

player has greater than 1, 000 units on the board at any given time. The purpose

of this definition is straightforward, we do not aim to consider unrealistic games or

games which do not provide sufficent endtimes for our given model. For games that

do not terminate, we define the probability of success to be zero for both Player 0

and Player 1. Assuming a probability of success of zero for those instances provides

the surface plot of probabilities in Figure 3.4.
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Figure 3.4: Ratio vs Ratio, Surface Plot

Recall the Ratio Strategy vs. Naive Strategy plot previously produced in Fig-

ure 3.1. Given that the naive strategy is essentially a case of the ratio strategy with

r = 0, consider the above plot where r1 = 0 and r0 takes on the entire range of values.

This cross-section of the surface plot is precisely the Ratio Strategy vs. Naive Strategy

plot. Conversely, setting r0 = 0 and letting r1 take on the range of values provides

the probabilistic complement of the curve at each point. Essentially, where Player 0

performs well, Player 1 performs poorly. Notice also that the vast majority of ratio

value combinations produce probabilities of 0. There are various ratio combinations

which produce terminating games, though we see all of these games feature relatively

small ratio values.
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3.4 The Piecewise Ratio Strategy

As detailed in the previous section, many games with particular ratio value combina-

tions of ratio strategy for Player 0 and ratio strategy for Player 1 do not terminate.

Thus, we define a new, more realistic strategy to ensure terminating games when

crossing similar player strategies. We define the Piecewise Ratio value for Player i,

with input ratio ri to be:

r∗i =


0 if A ≥ D and A ≥ 5

ri otherwise
(3.4)

The objective here is to place some boundary on sufficient success. For skirmishes

up to size 10×10, we reproduce the table of expected attacker success probabilities. Our

definition corresponds to initiating skirmishes in which the probabilities in Table 3.5

are in bold.

Table 3.5: Markov Chain Skirmish Results
HHH

HHHA
D 1 2 3 4 5 6 7 8 9 10

1 0.42 0.11 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00
2 0.75 0.36 0.20 0.09 0.05 0.02 0.01 0.00 0.00 0.00
3 0.92 0.66 0.47 0.32 0.21 0.13 0.08 0.05 0.03 0.02
4 0.97 0.78 0.64 0.48 0.36 0.25 0.18 0.12 0.09 0.06
5 0.99 0.89 0.77 0.64 0.50 0.40 0.30 0.23 0.16 0.12
6 1.00 0.93 0.86 0.74 0.64 0.52 0.42 0.33 0.26 0.19
7 1.00 0.97 0.91 0.83 0.74 0.64 0.54 0.45 0.36 0.29
8 1.00 0.98 0.95 0.89 0.82 0.73 0.64 0.54 0.46 0.38
9 1.00 0.99 0.97 0.93 0.87 0.81 0.73 0.65 0.56 0.48
10 1.00 0.99 0.98 0.95 0.92 0.86 0.80 0.73 0.65 0.57

This approach forces players to attack once sufficient attacking units are amassed.

Here, we allow a player to attack when the possible attacking units are the input ratio

by the player, or set the ratio to zero when we have both A ≥ D and A ≥ 5, which
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corresponds to initiating skirmishes in which the probability of success is at least 0.5.

The objective of the piecewise ratio strategy is to essentially compensate for strategies

which in and of themselves are too defensive in nature, but don’t want to sacrifice the

gains of being defensive, namely, not losing skirmishes they initiate. This approach

resolves our stalemate issues found with specific implementations of the ratio strategy

versus the ratio strategy. We’ll first examine the improvement of the piecewise ratio

strategy against the naive strategy.

3.4.1 Piecewise Ratio Strategy vs. Naive Strategy

We’ve examined the naive player against the naive player, as well as the naive player

against the ratio player, now we examine the naive player against the piecewise ratio

player to examine any performance increase. The plot of the data is displayed in

Figure 3.5.
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Figure 3.5: Piecewise Ratio Strategy Performance

We’ve included the data from the ratio strategy versus the naive strategy analysis
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in the plot for ease of reference. Compared to the ratio strategy versus the naive

strategy, the piecewise ratio strategy performs similarly to the ratio strategy on the

interval [0, 5]. However, on the interval (5, 20] we see a dramatic increase in performance

as the ratio value for piecewise ratio increases. While the performance is not spectacular,

we do see a substantial increase from the ratio strategy to approximately 15% to

approximately 40% for the piecewise ratio strategy. The implementation of the

piecewise ratio strategy against the naive player essentially allows a player to behave

much more defensively than otherwise would be allowed without being substantially

outperformed. We will next examine the piecewise ratio strategy against another

player using the piecewise ratio strategy.

3.4.2 Piecewise Ratio Strategy vs. Piecewise Ratio Strategy

The next logical step in examining the piecewise ratio strategy is to consider the

piecewise ratio strategy implemented against another piecewise ratio strategy. We

assume ratio values of r between 0 and 20 by increments of 0.25 as done previously.

The surface plot below displays the results of the simulations featuring two players

implementing the piecewise ratio strategy.
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Figure 3.6: Piecewise Ratio vs. Piecewise Ratio

The general landscape of the surface plot indicates a large area of roughly 50%

win percentages for either player. This area is located on intersections of large ratio

values for each player. Decreasing the ratio value for either player leads to more

interesting areas of the plot, which occur at areas close to the axes. We’ll discuss

those areas more thoroughly with the aid of a contour plot of the data as well.
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Figure 3.7: Piecewise Ratio vs. Piecewise Ratio

From the findings on the piecewise ratio strategy against the naive strategy, we

have already found that when the piecewise ratio strategy assumes a ratio of 0, we

simply produce a naive player.

The origin of the contour plot reproduces that result. Here we have two players

adopting the piecewise ratio strategy with ratio of 0. This results in our previously

found result of both players winning approximately 50% of the games. When the

piecewise ratio for Player 1 is fixed to be zero (i.e. along the traditional “x-axis”) and

the piecewise ratio is allowed to scale between 0 and 20, the performance of piecewise

ratio strategy for Player 0 is roughly half and half for the two players at near zero ratio

values, then proceeds to spike for Player 0 near a ratio expected from the optimized

ratio strategy results (in the [1.5,5] range), and ultimately levels off to roughly 50%

win for either player. Notice, for large ratio values for Player 1 the win percentage

is still roughly 50%. Compared to previous findings with the ratio strategy, this is
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a drastic improvement from performance continuing to diminish at the ratio value

increased.

Let’s consider now when piecewise ratio strategy for Player 0 maintains a ratio

of 0 and the piecewise ratio strategy for Player 1 is allowed to scale between 0 and

20 (i.e., along the “y-axis”). As previously found, areas near the origin produces win

probabilities near 50% for either player. An increase in the ratio for Player 1 into the

area found to be most successful in the optimized ratio section shows a sharp decrease

in win probability for Player 0. This is to be expected, as the probability of win in

this area for Player 1 is the same as the Probability for loss for Player 1 in the same

area along the piecewise ratio 0 axis. Accordingly, further increases in ratio values for

Player 1 level off the performance for both players to around 50%. Again, this change

in performance from the ratio strategy findings is drastic, where we found high ratio

values inevitably led to very low win percentages; here we have produced a modest

50% win probability.

The areas where the ratios for either player are in the range considered in the

optimized ratio section are perhaps most interesting. With the ratio for Player 1 to be

variable between 0 and 20, we see Player 0 attains a win probability between 70% and

80% for ratios above 1 and neighboring 2.5. Conversely, if we consider Player 0 ratios

to be variable between 0 and 20, we see a win probability of merely 20−30% for Player

1 ratio values in the discussed range between 1 and slightly above 2.5. Reference to

the surface plot indicates just how drastic these win probabilities are in context of

two identical players opposing one another.

The remaining section of the contour plot, the areas where both players take on

relatively high ratio values (e.g., 5 and above) shows win probability for each player

of about 50%. By design, this result is not surprising. The piecewise ratio strategy

was designed to produce a player who acts aggressively when possessing sufficient
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units. We are not surprised then to see two players who only attack when amassing

large amounts of units win with roughly equal proportion. This corresponds to both

players acting defensively until the piecewise ratio criterion is met, then acting as

Naive, producing the win probabilities we have already found.

Overall, the surface and contour plots inform us that aggressive strategies are

met well with low, non-zero ratio values. The use of a Naive Strategy essentially

performs well only when the other player acts very defensively, which can be remedied

by implementing an addition criterion as we have with the piecewise ratio strategy.

Further, if both players act defensively, the games essentially end by the toss of a coin.

And finally, if a player adopts the piecewise ratio strategy with a ratio previously

shown to be successful, the player will continue to be successful against both overly

aggressive and overly defensive players. The piecewise ratio strategy seems to “fix”

defensive players to at least the point of producing a challenge, and produces favorable

results when implemented with low ratio values as well.

3.4.3 Piecewise Ratio Strategy with Continents

The next step in determing the effectiveness of the piecewise ratio strategy is to

perform a series of continent simulations. For this set of simulations we choose to use

two players implementing the piecewise ratio strategy with different ratios. We choose

r∗0 = 2.5 and r∗1 = 10. The value for r∗0 is chosen as we have repeatedly shown this

ratio to be effective against both aggressive and defensive players. The value of r∗1 is

chosen as it is a reasonably defensive player, one which would be ineffective in the

ratio strategy setting, which will serve well to examine the effects of giving it control

of continents.

Thus, we proceed to allow the piecewise ratio player with r∗1 = 10 to have control

of each continent in separate simulations. The results of the simulations are displayed
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in the table below.

Table 3.6: PW Ratio at r = 2.5 vs. PW Ratio at r = 10 with Given Continent
``````````````̀Strategy

Continent None Asia N. America Australia S. America Africa Europe

Piece-Wise Ratio at r = 2.5 0.752 0.504 0.426 0.482 0.450 0.329 0.276
Piece-Wise Ratio at r = 10 0.248 0.496 0.574 0.518 0.550 0.671 0.724
Difference 0.504 0.008 -0.148 -0.036 -0.100 -0.342 -0.448

The results of these simulations are perhaps most interesting. The implemen-

tation of the piecewise ratio strategy with r∗1 = 10 performed very well. In the case

of the Simulations featuring Asia, we find near equal win percentages. However, for

all other continents, the piecewise ratio player with r∗1 = 10 has outperformed the

piecewise ratio player with r∗0 = 2.5. What we have found is that even though Player 1

is very defensive, it is an effective strategy when given continents. It is not unrealistic

to imagine a scenario in which a player intentionally gains early control of a continent

and proceeds to play defensively under the piecewise ratio strategy guidelines and

outperforms otherwise strong performing strategies.

3.5 Strategy Comparison & Conclusions

Concluding our discussion of strategies, we have defined a variety of heuristic methods

of play. The most basic of these heuristics is the naive strategy, which amounts to a

player attacking as much as possible with as much force as possible. We found that two

players against one another both implementing the naive strategy results in roughly

equal win percentages for each player. This result was precisely as suspected. We then

allowed one of the aforementioned players to have a single continent at the beginning

of the game; an assumption to simply examine the impact of continent control. The

player who was given each of the continents over the various simulations for each

continent won with varying increased performance depending on the continent given.

We somewhat surprisingly found the possession of Asia did not strongly increase the
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win percentage, whereas control of Europe drastically increased the performance of

the player. Control of other continents altered performance to somewhere in between

those percentages. We found that while the naive strategy made poor decisions, early

control of a continent, to varying degrees, would compensate for this effect.

To explore a more realistic heuristic method of play, we introduced the ratio

strategy. Reframing the naive strategy to account for both the number of attackers

and defender, we view the naive strategy as essentially requiring A ≥ 0 ∗D for number

of attackers, A, and number of defenders D. The ratio strategy is based on this

reframing of the naive strategy and allows the 0 in the previous inequality to scale

over any value of interest. We explored values in the range of [0, 20] by increments of

0.25. We posed the ratio strategy against a player implementing the naive strategy for

each of the ratio values and found a clear trend. For low ratio values, the ratio player

and naive player performed similarly. This was expected, as a low ratio corresponded

roughly to same strategy as the naive strategy. However, increasing the ratio modestly,

towards the range of [1, 5] proved to be a drastic improvement in win percentage.

This range roughly corresponds to a player not being overly aggressive, as the naive

strategy is designed to be, but more modest in attacking. Beyond the range of [1, 5],

we found that the probability of winning for the ratio player dropped off substantially.

As the values approached the end of our range of consideration, we found that the

win percentage continued to decrease. While we only observed ratios as high as 20,

we reasonably suspect the win percentages will continue to trend downward. The

reasoning here is simple, the higher ratio values essentially direct a player to attack

only under conditions unlikely to be met in realistic play. Furthermore, while the

ratio player with a high ratio attempts to continue stockpiling units, the naive player

will continually attack and deplete the enemy units. While the naive player will have

very little in reserve, the ratio player will likely be unable to amass any substantial

amount of units and will slowly be taken over.
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From the simulations featuring the naive strategy against the ratio strategy, we

did find one area of ratio of particular interest; the moderate ratio values in which the

ratio strategy performed well. We then examined the interval of [0.95, 4.5] more closely

by increasing our simulation count to produce less error and refining our interval into

increment of 0.05. We found that values approximately between [1.5, 3] all performed

very similarly, with nearly 80% win percentages. We subsequently denoted any ratio

strategy using a ratio of 2.5 to be the optimized ratio strategy.

Given the optimized ratio strategy, we became interested in finding the impact

of giving continents to a naive player against a optimized ratio player. The reasoning

here is that previous findings regarding the continents have shown that possession of

a continents strongly influences the ability to win a game, even when strategically

performing poorly. The results of the optimized ratio strategy against the naive

strategy with continents showed that the optimized ratio strategy still outperformed

the naive strategy, with the exception of the naive player being given Europe.

The next test we posed to the ratio strategy was to examine how the ratio

strategy performed against another player implementing the ratio strategy. For small

ratio values, we found results consistent with previous findings. However, we quickly

discovered that many ratio combinations put both players in a far too defensive

position. For ratios in the range of [0, 20] for the two players, the vast majority of

games simply do not terminate; both players simply stockpile units indefinitely. Since

we had every desire to put a threshold on when the appropriate time to attack is, we

then modified the ratio strategy by introducing the piecewise ratio strategy.

The piecewise ratio strategy amounts to implementing the ratio strategy when

the opponent has a large mass of units or the player has few units to attack. Essentially,

when the count of attacking units is low, the piecewise ratio strategy acts in accordance

with some ratio as prescribed by the ratio strategy. Once the piecewise ratio player
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has a enough units with respect to the enemy, the piecewise ratio player is then

designed to attack more in line with the criterion for the naive strategy. That is, when

the piecewise ratio player has sufficient units, attacks should be implemented more

liberally than required by the ratio strategy.

To examine the performance of the piecewise ratio strategy we performed a

similar set of exercises. We first examined the performance of the piecewise ratio

strategy against the naive strategy. Specifically, this performance is referenced against

the performance of the ratio strategy against the naive strategy. A similar curve is

produced which shows the piecewise ratio strategy outperformed the ratio strategy.

Further, the objective of the piecewise ratio strategy is met. The piecewise ratio

strategy increases the performance of ratios which are very high; namely, defensive

players have a much higher probability of winning against a naive player than we

previously found.

To further examine the piecewise ratio strategy, we examined the piecewise ratio

strategy against another player implementing the piecewise ratio strategy, as was our

aim when examining the ratio strategy against the ratio strategy. These simulations

proceeded successfully for ratio values between 0 and 20. The simulation results were

then used to produce a surface plot to understand the general landscape of these

interactions. We found several interesting results. For low ratio values, we found

results in line with our previous general findings regarding the ratio strategy and the

naive strategy. For values near the ratios examined in the optimized ratio strategy,

we found similar performances, which for the piecewise ratio strategy also produced

optimal results. The more interesting results are found when both players implements

high ratios. The win percentages were roughly 50% for a wide range of high ratios,

ratios deemed “too defensive” in the ratio strategy. Previously, games featuring two

players of similar ratios would fail to terminate.
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We then chose two ratio values, the first value r∗0 = 2.5 and the second value

r∗1 = 10, to perform a series of continent-oriented simulations. Our desire was to

determine if the traditionally defensive ratio of r∗1 = 10 could be shown to be successful

against a proven ratio value of r∗0 = 2.5 by simply allowing for onset continent control.

The results of these simulations were surprising. When no continent was given, the

piecewise ratio player with r∗0 = 2.5 strongly outperformed the piecewise ratio player

with r∗1 = 10 as would be expected. However, when given a continent we found

that the piecewise ratio player with r∗1 = 10 outperformed the piecewise ratio player

with r∗0 = 2.5 in most instances. Several of the simulations showed Player 1 strongly

outperforming Player 0. It appears the piecewise ratio strategy is a successful bridge

between playing defensively and playing moderately.



Chapter 4

Analysis of Simulation Data

4.1 A Brief Introduction to Neural Networks

4.1.1 Scope and History

Based on our simulations of various strategies, a natural pursuit is to then build a

predictive model for the outcome of a game. To achieve this, we build neural network

models using the graphical predictors and game predictors previously discussed. We

start with a review of the relevant neural network concepts and terminologies. Neural

networks make up a broad class of statistical models. Originally motivated by modeling

biological neurons, McCulloch and Pitts (1943) gave the neural network model

ni(t) = H(
∑
j→i

wjinj(t− 1)− θi) (4.1)

for the sum over j neurons which are connected to some neuron i with transformation

function H given by the threshold function H(x) = I(x > 0). The output ni(t) is

the signal produced from neuron i at a time t where the neurons have associated

85
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weights in which 0 < wij < 1. Present day neural networks represent a broad class

of models, which are commonly visually represented by a network architecture of

three distinct types of layers (Lesmeister, 2015). Neural network models in which

information is passed forward from one layer to the next are referred to as feed-forward

neural networks. We will limit our discussion to networks of this variety.

Specifically, neural network models are non-linear regression models and are

sufficiently flexible to approximate any smooth function with an arbitrary degree of

accuracy (Venables & Ripley, 2002). Furthermore, the implementation of a neural

network model requires no underlying assumptions of the structure of our data

(Lesmeister, 2015).

4.1.2 Architecture and The Forward Pass

While neural networks are generally represented as featuring three distinct types

of layers of nodes, in the input layer to the hidden layer(s) to the output layer, a

neural network is actually a composition of functions f(x;W) of a vector of inputs x

and collection of weights W visually organized by layers and nodes (Efron & Hastie,

2016). One such visualization of a general neural network featuring 3 input nodes

corresponding to the labels “Var1”, “Var2”, and “Var3”, 4 hidden layer nodes, and 1

output node corresponding to the label “Response1” is provided in Figure 4.1. Visually,

the network representation of neural networks is a powerful aid, though much detail

is lost in relying on this alone for understanding (Fritsch & Guenther, 2016). We

will address both the architectural scheme of neural networks as well as the function

representation, beginning with the former by examining Figure 4.1.
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Figure 4.1: Neural Network Example

The edges between the nodes are assigned numeric values and are referred to as

weights. We will refer to the collection of these weights as W. Each portion of the

neural network architecture performs a specific task which will be detailed below.

The first layer in a neural network model is the input layer, which corresponds

to the green nodes in Figure 4.1. The input layer is made up of a series of input

nodes which represent the indepedent variables of interest in some analysis. These

nodes represent the “predictors” in a more classical statistical analysis such as simple

linear regression. We typically denote these inputs as a vector with components xi.

The nodes in the input layer feature weighted connections to nodes in the following

layer(Lesmeister, 2015).

The layer following the input layer is denoted as the hidden layer and features

a user-specified number of hidden nodes. The size of the hidden layer as well as the

magnitude of the weights are frequently established by experimentation or through
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some separate algorithm. A frequent criticism of neural networks is the ambiguity

of both the behavior of the hidden layer and the choice of the size of the hidden

layer. Both of these issues can be addressed satisfactorily for many instances of

analysis(Lesmeister, 2015). Neural network models are not suitable for all types

of analysis. Much effort in modern statistics and computer science is devoted to

determining the appropriate weights and sizes of neural networks. While we will

restrict our discussion to a single hidden layer, any number of hidden layers can be

implemented.

The weight wl
ih indicates the lth weight from the input layer(i) to the hidden

layer(h). To proceed from input layer with an input xi with weighted connection

wl
ih to the hidden layer, we multiply the value of xi by the weight wl

ih to produce a

numeric value xi × w(1)
i . This is repeated for all weights connected to nodes in the

input layer. Additionally, neural networks feature bias terms at each layer beyond the

input layer, which we have produced in Figure 4.2. The bias terms, αl for bias at layer

l, act as an additional input for the layer which is analogous to an intercept term in

traditional linear models. The bias nodes and weights are colored blue in Figure 4.2.
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Figure 4.2: Neural Network Example with Bias

Note also from Figure 4.2 that the bias nodes have a value of 1 inside of them.

The bias nodes always receive an input of 1. Additionally, as with all inputs the

bias nodes have an associated weight, αl for the l layer. Thus, to proceed from the

bias node at the input layer, αh, to the hidden layer, we multiple the value of the

input, 1, by the weight to produce a value 1× αh. Once all inputs and weights have

been appropriately multiplied, the hidden layer node with terminating arrows takes

all of the values produced from each weight and sums the values. Once all values

have been summed at each hidden node, individually, the sum at the hidden layer

node undergoes a transformation by a prespecified function φh, termed the activation

function. Generally, the transition from the input layer to the hidden layer is given by

φh(αh +
∑

l

w
(l)
ih xi) (4.2)
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Common activation functions include the sigmoid function, the logistic function,

the linear function, the hyperbolic tangent function, and the rectified linear func-

tion(Lesmeister, 2015). The choice of activation function varies on the scope of the

problem, as well as an element of industry rules of thumb. Typically, some variant of

the logistic function is used for classfication and some variant of the linear function is

used for a linear output. While we will assume each neuron uses the same activation

fuction, it is important to note that each neuron beyond the input layer has it’s own

activation function and these functions can differ at each layer and indeed each node

within each layer.

There is also a historic element to the choice of the activation function as well.

George Cybenko first showed feed-forward neural networks containing finite hidden

nodes could approximate any continuous function under limited assumptions. This

is a result known as the Universal Approximation Theorem (Cybenko, 1989). The

activation function shown by Cybenko was the sigmoid function, though this result

was repeated for a multitude of other activation functions by later researchers.

Once all values at the hidden layer have been put through the activation function,

the values produced from the hidden layer nodes serve as inputs for the next layer.

The next and final transition of interest in the neural network architecture is the

transition from the hidden layer to the output later. As represented by Figure 4.1 and

Figure 4.2, the transition is represented from traversing the four orange nodes to the

single red node of the output layer. Depending in the type of analysis, this output

layer can produce a classification or approximation to a curve given inputs x.

The values entering the output layer undergo precisely the same procedure as

processing values from the input layer to the hidden later. The output layer receives

values by multiplying the values exiting the hidden layer and weight associated with

that particular connection. This is repeated for each connection terminating on an
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output layer node. The incoming values on the output layer nodes are then summed,

and become the inputs for an activation function associated with the output layer

node of interest. Given Equation 4.2 and the procedure to evaluations from the hidden

layer to output layer, we can produce the following composition of functions

yk = φo(αk +
∑

l

w
(l)
hkφh(αh +

∑
l

w
(l)
ih xi)) (4.3)

for output values yk, output activation function φo, hidden layer activation function

φh, output layer bias αk, hidden layer bias αh, hidden layer to output layer weights

w
(l)
hk, input layer to hidden layer weights w(l)

ih , and input values xi (Venables & Ripley,

2002). Note, Equation 4.3 is given to produce an output yk, while in general a neural

network is a composition of functions, f(x;W), which takes on the form given in

Equation 4.3. Also note that the summations at both layers are indexed over the l

weights contained between the two layers of interest typically do not have the same

number of weights. For example, in Figure 4.2 we have l = 16 weighted edges between

the input layer and hidden layer while only l = 5 edges between the hidden layer and

output layer.

The procedure of passing inputs through the input layer, applying appropriate

weights and transformations until the output layer is referred to as the feed-forward

part of the neural network algorithm (Lesmeister, 2015). While our discussion of

neural network architecture is centered around describing an already existing network,

it is important to note than the values of all the weights in W are typically the result

of some optimization algorithm used to adjust the values of the weights to reduce

error.



4.1. A BRIEF INTRODUCTION TO NEURAL NETWORKS 92

4.1.3 The Backpropagation Algorithm

Once the forward pass of the neural network is completed, an optimization method

for reducing error is implemented. The most common procedure for reducing error is

the backward propagation of errors(backpropagation) algorithm. The backpropagation

algorithm assesses the error associated with the training data after the feed-forward

portion of the algorithm (Lesmeister, 2015). The error is calculated by a user-defined

loss function, L; this function is typically taken to be the sum of squared error given

by

L =
∑

i

Li[yi, f(xi)] =
∑

i

(yi − f(xi))2 (4.4)

for data with true response yi and vector of inputs xi (Lesmeister, 2015). Since the

weights chosen at the beginning of the algorithm are initialized to small random values,

the errors found at this stage in the procedure tend to be large. Then reducing the

error in the n samples in the training set {xi, yi}n
1 of inputs xi and responses yi can

be viewed as an optimization problem in which we solve

min
W

{
1
n

n∑
i=1

L[yi, f(xi)]
}

(4.5)

for neural network outputs f(xi) and target values yi.

Naturally, to minimize the loss function we differentiate L[y, f(x,W)] with

respect to any weight in W to observe the change in error with respect to small

changes in weights. Since f(x,W) is a composition of functions, the derivative will be

found by implementing the chain rule over the series of compositions (Efron & Hastie,

2016). Most methods for minimizing the above expression implement gradient descent

(Efron & Hastie, 2016). A wide variety of alterations and modifications exist. We will
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omit the details of computing the error changes with respect to weight changes as we

will not implement unmodified backpropagation in our analysis, though the spirit of

the algorithm is maintained. A common pursuit in reducing the error is to further

modify the fit criterion by introducing a regularization term to Equation 4.5.

4.1.3.1 Weight Decay

Perhaps the most common regularization term is to penalize the square of the weight

parameters. This application of L2 regularization is termed weight decay in neural

networks and is simply modifying the fit criterion to

L+ λJ (W) (4.6)

where J (W) is some regularization function which is often taken to be the sum of

squares of the weights of W and λ ≥ 0 is the weight decay parameter. The addition

of the weight decay term has the interpretation of penalizing large components of

the collection of weights more heavily. The use of weight decay aids the optimization

process as well as protects against overfitting (Venables & Ripley, 2002). By applying

our loss function 4.4, we now have the minimization problem given by

min
W

{
1
n

n∑
i=1

L[yi, f(xi)] + λJ (W)
}

(4.7)

where J (W) is given explicitly by

J (W) = 1
2 |w|

2 (4.8)

where w is a vector of weights in W and |w| is the L2 norm of the form
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√
w2

1 + w2
2 + ...+ w2

n (4.9)

The factor of 1/2 on J (W) is typically included to simply aid in the calculation

of the gradient (Venables & Ripley, 2002). Given 4.5, 4.7, and 4.8, we have

min
W

{
1
n

n∑
i=1

L[yi, f(xi)] + λ
1
2 |w|

2
}

(4.10)

Loss functions are typically not convex in the elements of W, so solving this

minimization problem is generally an unrealistic task (Efron & Hastie, 2016). Given

that, we typically aim to find a sufficient local optima of our desired loss function as

shown in Equation 4.11

min
W

{
1
n

n∑
i=1

(yi − f(xi))2 + λ
1
2 |w|

2
}

(4.11)

Minimizing the error is essentially adjusting weights until a better fit is found.

These adjustments are based on optimizing the error functions with respect to changes

in the weights.

4.1.3.1.1 BFGS Algorithm

Weight decay can be implemented by a variety of optimization algorithms, the

BFGS algorithm which was simultaneously published by Broyden (1970), Fletcher

(1970), Goldfarb (1970), and Shanno (1970) is a popular method for implementing

weight decay. The BFGS algorithm provides an approximation to the inverse Hessian

matrix which aids in adjusting weight changes as given in Equation 4.12, instead of

the gradient of the error function alone as done with unmodified backpropagation.

The BFGS method belongs to the class of quasi-Newton methods which are based on
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Newton’s method and (in this context) perform the following iteration to achieve a

local minima

wn+1 ← wn − [HL(wn)]−1∇L(wn) (4.12)

where wn+1 is a weight vector of non-bias weights which depend on the computa-

tion of the inverse Hessian matrix [HL(wn)]−1, a square matrix of second-order partial

derivatives of the loss function, and ∇L(x), the gradient vector of the loss function.

The procedure aims to provide weights which at each iteration of the algorithm reduce

the estimate of the loss function. The utilization of the Hessian matrix allows for an

efficient update in descending the gradient as the local curvature of the loss function

is described more efficiently than in first order techniques. The computation of the

inverse Hessian matrix is frequently impractical for large scale problems as explicit

calculations become expensive in both time and space. To remedy this problem, Quasi-

Newton methods have been developed with the aim of approximating the inverse

Hessian in Equation 4.12 (Nocedal & Wright, 2006). Among these methods is the

BFGS method which iteratively constructs an approximation to the Hessian matrix.

The steps for the algorithm are presented below.

The BFGS method requires a starting value x(0) and an estimate for the matrix

of second-order partial derivative of the loss function, ∇2L(x(0)), which is typically

taken to be the appropriate size identity matrix at the beginning of the algorithm.

Then for k ∈ N, perform the following iteration to produce an approximation of the

Hessian matrix:

Find the search direction pk by

pk = −H−1
k ∇L(xk) (4.13)
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Determine step length αk in direction of pk by

αk = argminL(xk + αpk) (4.14)

We define the vector

sk = αkpk (4.15)

The new iterate of x becomes

x(k+1) = x(k) + s(k) (4.16)

We define

y(k) = ∇L(x(k+1))−∇L(x(k)) (4.17)

Then Hessian approximation at k + 1 is given by

Hk+1 = Hk −
Hks

(k)(s(k))THk

(s(k))THks(k) + y(k)(y(k))T

(y(k))T s(k) (4.18)

Then the inverse Hessian approximation is given by

H−1
k+1 = H−1

k −
H−1

k y(k)(s(k))T + s(k)(y(k))TH−1
k

(s(k))Ty(k)

+ ((s(k))Ty(k) + (y(k))TH−1
k y(k))(s(k)(s(k))T )

((s(k))Ty(k))2

(4.19)

Thus, at each iteration the BFGS algorithm gives an update for the approximation
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of the inverse Hessian, which is then used to perform an update on the weights (Nocedal

& Wright, 2006). One interation of the forward pass and backpropagation constitutes

one epoch. The processes of the feed-forward pass and backpropagation are carried out

either over some number of epochs or until some tolerance of error is met (Lesmeister,

2015).

4.2 Neural Network Analysis of Data

4.2.1 Model Structure

Given the discussion of neural network architecture and optimization, we proceed to

build a neural network to examine data extracted from simulations of the game RISK.

Our aim is to build a neural network model to perform the task of supervised learning

of classifying games as a 0 or 1, indicating a win for Player 0 or Player 1, respectively.

The activation function we use for our classification problem is the sigmoid function

given by:

φ(x) = 1
1 + e−x

(4.20)

A plot of the sigmoid function given in Equation 4.20 is displayed in Figure 4.3

which indicates the classifications given to neural network output values.
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Figure 4.3: Sigmoid Function

The sigmoid function serves our purpose nicely as it turns a classification problem

into placing values on a smooth curve. Furthermore, the sigmoid is differentiable,

which aids in optimization, and is bounded from [0, 1], which makes interpreting the

network outputs as probabilities to be straightforward.

We build single layer feed-forward neural network models on a dataset featuring

5000 simulations; 2500 simulations from each of Naive Strategy versus Naive Strategy

games and Optimized Ratio Strategy versus Naive Strategy games. The simulations

feature all of the previously discussed 28 predictors belonging to both the class of

game predictors and the class of graphical predictors. The objective of our analysis is

to provide a classification, namely identifying the winning player (Lesmeister, 2015).

For our analysis, we will implement a single hidden layer neural network of the form

yk = φo

(
αk +

∑
l

w
(l)
hkφh(αh +

∑
l

w
(l)
ih xi)

)
(4.21)
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4.2.2 Fitting Models via Grid Search

Given the computationally intensive tasks of producing a forward pass, backpropa-

gation with weight decay through the BFGS method, and making predictions after

fitting, we implement software to fit our model. Such software is provided in the nnet

package in R. The nnet package makes use of neural networks of the variety that we

have thus far described (Venables & Ripley, 2002).

To build our model on the data set of 5000 simulations we perform three separate

procedures simultaneously to ensure we have produced a model which fits the data

well. First, models are built using a portion of the 5000 simulations as a training set

and the remainder of the simulations used as a test set. We use training set sizes of 5%

to 100% of the 5000 simulations. That is, we build models on 20 different training/test

set splits. The objective here is to examine the performance of the model after being

built. A model which performs well will produce similar classification results for the

test set as well as the training set. Furthermore, models which are given a large

portion of the data for training tend to be less general and simply remember the data.

Secondly, to assure performance desires are met, we implement a grid search

on the size of the single hidden layer and the weight decay parameter λ (Jed Wing

et al., 2017). We allow the weight decay to take on values of 0 to 1.5 by increments

of 0.1 and we allow the hidden layer to contain 1, 2, or 3 nodes. The restriction on

number of nodes serves two purposes. First, we want to minimize model complexity

given our abundance of predictors. While a model with greater than 3 nodes in the

hidden layer may be more flexible, we restrict our hidden layer to a maximum size of 3.

Second, we regard our desire to prevent overfitting as more important than allowing

additional, perhaps unhelpful, model flexibility through increased hidden layer size.

Furthermore, since weight decay is our primary means of preventing overfitting, we

provide our grid search with much more granular values of λ. The values we allow
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our models to take on are 0 to 1.5, by increments of 0.1. Since we are performing a

grid search of hidden layer size and weight decay value, the more granular increments

of weight decay increases the number of models to be built and tested substantially.

Restricting the size of the hidden layer to 3 helps to minimizes the number of models

to be trained and examined.

Thus, for each training data split, we build 48 neural networks models, one for

each grid point on our 3× 16 grid for 3 possible hidden layer nodes and 16 possible

weight decay values. For each of these 48 models, we pick the model with the highest

accuracy on the entire data set as the best model under the given parameter values.

The table in Figure 4.1 represents the models built on various training percentages of

the data set by highest accuracy. The table displays the size of the hidden layer, the

decay parameter value, and the accuracy on the full data set.

Table 4.1: Model Results
Training Percent Size Decay Accuracy

0.05 3 1.1 0.9784
0.10 1 1.0 1.0000
0.15 3 1.0 0.9914
0.20 3 1.0 0.9964
0.25 2 0.7 0.9994
0.30 3 0.7 0.9970
0.35 2 1.3 0.9990
0.40 3 1.1 0.9998
0.45 3 1.2 0.9998
0.50 3 1.2 0.9988
0.55 3 0.8 1.0000
0.60 3 1.3 0.9960
0.65 3 1.0 0.9992
0.70 3 1.2 0.9984
0.75 3 0.6 0.9992
0.80 3 1.0 0.9990
0.85 3 0.7 0.9988
0.90 2 0.8 1.0000
0.95 2 0.9 1.0000
1.00 2 1.2 0.9992
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Clearly, the model results indicate that virtually all of the models perform

similarly. Additionally, there are models of hidden layer size 1, 2, and 3 and decay

values between 0.6 and 1.3. In general, producing a model which performs well and

is relatively simple in comparison to similarly performing models is desirable. Given

this preference for a simpler model that performs well, the model built on 10% of

the training data performs quite well. The model has a single node in the hidden

layer and is therefore is as simple of an architecture as possible in our grid search.

The corresponding decay value of 1.0 is reasonably modest and presents no challenges

in computation. While all of the models perform very well in terms of accuracy,

the model built on 10% of the training data correctly classifies 100% of the 5000

simulations.

Thusly, we have a resulting architecture of 28 input nodes, 1 hidden layer node

in the single hidden layer, and 1 output node in our neural network. Furthermore,

since we have l = 28 nodes in the input layers and l = 1 node in the hidden layer, we

have

yk = φo

(
αk + wh,kφ1(αh +

28∑
l=1

w
(l)
i,hxi)

)
(4.22)

for an output value yk, output activation function φo, hidden layer bias αh, hidden

layer activation function φ1, output layer bias αk, weight of inputs wi,h going to hidden

layer 1 from input value xi, and the single weight from the hidden layer to ourput layer

wh,k. This equation can be visually representation by the neural network architecture

in Figure 4.4.
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Figure 4.4: Neural Network of Model
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While the visualization is helpful in understanding the sequence of events and

overall strcture, the equation of the neural network is perhaps more important. The

equation for the neural network produced in 4.4 is given in Equation 4.23.

y = φ0(−2.8845567981+5.6122363192φ1(

−0.02967278 ∗ AttacksP 0+0.1297937 ∗ AttacksP 1

−0.01885228 ∗ Starter+− 0.04633782 ∗ Turns

−0.05951199 ∗ AfricaP 0+0.06862268 ∗ AfricaP 1

−0.04970139 ∗ AsiaP 0+0.0393970464 ∗ AsiaP 1

−0.1292855218 ∗ AustraliaP 0+0.0835975635 ∗ AustraliaP 1

−0.0633787972 ∗ EuropeP 0+0.0895343945 ∗ EuropeP 1

−0.0402959702 ∗N.AmericaP 0+0.0483062897 ∗N.AmericaP 1

−0.0718316674 ∗ S.AmericaP 0+0.0478625126 ∗ S.AmericaP 1

−0.0072990364 ∗ µ(Betweenness)+0.0030263006 ∗
∫
GraphDensity

0.0032703752 ∗
∫
Cluster+− 0.0066139075 ∗

∫
Diameter

−0.0452837284 ∗
∫
EigenCentrality+0.0010148911 ∗

∫
RiskGraphs

−0.0013735898 ∗
∫
IndependenceNumber+− 0.0190105750 ∗

∫
DegreeMax

0.0032267072 ∗
∫
CutV ertices+0.0163418510 ∗

∫
AveragePathLength

−0.3603233040 ∗DraftMaxP 0+0.3044527454 ∗DraftMaxP 1

− 0.0004512878))
(4.23)

where φo and φ1 are both the sigmoid function. For a complete understanding we

include an example of a computation for predicting the probability of a Player 0

success given data from a single simulated game.
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Table 4.2: Model Prediction by Hand
Inputs Weight Hidden Layer Input Hidden Layer Output Weight Output Layer Input Output Layer Output
Turns 6 -0.04633782

7.549033 0.999473 5.612236 5.609282 0.93847

P0 Attacks 3 -0.02967278
P1 Attacks 37 0.1297937
Starter 1 -0.01885228
P0 Africa 0 -0.05951199
P1 Africa 1 0.06862268
P0 Asia 0 -0.04970139
P1 Asia 0 0.03939705
P0 Aust 0 -0.1292855
P1 Aust 4 0.08359756
P0 Eur 0 -0.0633788
P1 Eur 4 0.08953439
P0 N. Am. 0 -0.04029597
P1 N. Am. 0 0.04830629
P0 S. Am. 0 -0.07183167
P1 S. Am. 2 0.04786251
Mean Betw. 3.762 -0.007299036
GD Int. 0.738 0.003026301
Comp. Int 1387.5 0.003270375
Diam. Int 230 -0.006613907
Eigen. Int. 92.6 -0.04528373
4-Vert. Int 802.2 0.001014891
Ind. Int 1655 -0.00137359
MaxDeg Int 127 -0.01901058
CV Int 280 0.003226707
APL Int 101.8 0.01634185
P0 Max D. 7 -0.3603233
P1 Max D. 24 0.3044527
Bias 1 1 -0.0004512878
Bias 2 1 -2.884557

The rightmost column of Table 4.2 indicates a classification of 1, since 0.93847 >

0.5. This classification indicates that given the data set, our model predicts Player 1

won the game.



Chapter 5

Discussion

We began our analysis by reproducing the results of Tan(1997) and Osborne(2003)

in Markov chain approximation to skirmishes. The Markov chain modeling of the

skirmishes in RISK represents a large stepping stone for further analysis. An adequate

understanding of the events of a skirmish are pivotal in developing a deeper understand-

ing of the entire game. We took the results from the Markov chain approximations as

reinforcements for our intuition and later as an aid in developing the piecewise ratio

strategy. Upon completion of the Markov Chain approximations we introduced our

model of the game.

To model the game, we made several simplifying assumptions. A player which

abides by all of the assumptions in Assumptions for Naive Analysis was termed a

naive player and more generally represented the naive strategy. The most modified

assumption was the rate at which a player would attack. The naive player represented

a player which would attack whenever possible with as much force as possible. We

made a series of changes to this assumptions and found an increase in performance

with each change.

To implement these assumptions we built a discrete time network model as

105
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outlined in The Network Model. The aim of the model was to combine graph theoretic

properties and properties of the game to extract features of RISK which could be

used as predictors in a statistical analysis. Obviously, collecting enough empirical data

from a model implemented by two human players interacting would be problematic.

We chose to built a program to make use of our assumptions and provide output

corresponding to each graphical change at the completion of a game.

To collect such data, we modeled the RISK board as a dynamic graph in which

edges undergo deletion and insertion. Specifically, we deleted edges when vertices of

the same color shared an edge and reinstated edges when vertices were of opposite

color and such an edge existed in the underlying graph. This representation of the

game allowed for the end of the game to be seen as an empty graph on 42 vertices.

Additionally, this graphical representation of the game allows the graphical properties

to exhibit a discernable trend.

This depiction of the game allowed for the examination of many features, as

discussed in The Unit List and Graphical Properties of Gt. Our model produced a

matrix associated with each tth player attack which could be graphically analyzed. We

explored a wide range of graphical predictors in our model, as discussed in Graphical

Properties of Gt. We found that our collection of predictors, both graphical and

game-based, served well in our statistical pursuit.

The next major step in implementing our model was to examine a series of

strategies for our players to use. We begin with the naive strategy as outlined in

The Naive Strategy. We quickly found that as designed, the naive strategy suffered

from a host of flaws. Namely, the naive strategy seemed to be an overly aggressive

player. An additional step we took at each introduction of a strategy was to perform

a series of simulations in which a player was given onset control of a continent. For

the naive strategy, the objective of these simulations was to simply examine how the
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naive strategy performed when given more resources and a better starting position

in the game. Of course, the player given continent control at the onset performed

better and we generally found that the naive player was too aggressive. We found

that possession of Africa or Europe increased performance the most, and provided

reasoning for each of those cases.

To remedy this, we introduced a generalized strategy based on the initial attacking

criterion of the naive strategy which we called the ratio strategy. The ratio strategy

featuring a scalable attacking criterion that depended on the number of attacking

armies and the number of defending armies. This is in contrast with the naive strategy

which required only that there be non-zero units available for attack. Through

examining the interactions between the naive player and the ratio player we found

an interval of ratio values in which the ratio player strongly outperformed the naive

player. However, we found for small ratio values that the ratio strategy performed

similarly to the naive strategy. This finding was not particularly surprising as small

ratios correspond to strategies very similar to the naive strategy.

However, we also found that the performance of the ratio strategy at large ratio

values was poor. Specifically, for sufficiently large ratios we found the naive strategy

strongly outperformed the ratio strategy. This scenario corresponds to a ratio player

being far too defensive and allowing the naive player to constantly chip away the units

and territories belonging to the ratio player.

The interval in which the ratio strategy outperformed the naive strategy was

thoroughly examined and we took a ratio values of r = 2.5 to be the optimal ratio in

the ratio strategy; as noted “optimal” is used in the sense of a maximum value on

a single variable curve, as opposed to optimal as defined in game theory. The win

percentage of this ratio against a naive player was found to be roughly 80%. We then

took this specific ratio of the ratio strategy to use against a naive player which is
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given onset control of continents. We found that only when given Europe did the

naive strategy outperform the ratio strategy with a ratio of r = 2.5.

These strategic findings indicate that the adoption of a moderate strategy is

generally indicative of successful play. While many other strategy definitions could

exist, and certainly without any respect to a ratio, we found that attacking with

roughly 2.5 times the number of units the opponent has on a territory tends to

produce favorable results. Of course, from the Markov chain findings there is a

higher probability when attacking with much larger forces. The drawback in that

interpretation is that attacking in those scenarios typically indicates the player has

been amassing units and playing defensively for far too long in the game. These are

the instances in which playing moderately is pivotal, where playing defensively will be

most detrimental.

Given the successful performance of the ratio strategy under the constrained

aforementioned situation, we sought to next examine the performance of a ratio player

against another ratio player. The attempt at these simulations led to the finding

that many games of this nature, for varying ratio values, simply do not terminate.

Effectively, the combinations of ratios produce two players who are too defensive to

attack in most circumstances. The non-terminating games presented yet another

hurdle in developing a more successful strategy. To combat this problem, we introduced

the the piecewise ratio strategy.

The piecewise ratio strategy served the purposed of resolving players acting too

defensively by modifying the criterion of attack to be more realistic when a player has

amassed a significant amount of units available for attack. While many thresholds

could be set, we set the ratio for attacking to be a piece-wise function. First, a player

will attack under any circumstances when A ≥ D and also A ≥ 5. Otherwise, the

player will attack in accordance with whatever pre-chosen ratio.
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While the piecewise ratio strategy shows itself to be an improvement upon

the previous strategies, other successful modifications likely exist. The definition

of the piecewise ratio strategy relied on the probability of attacker success findings.

Alternatively, ratios of simular structure to the piecewise ratio strategy could be

based on the findings on the Expected Attacker Losses, in which we only commit to

skirmishes in which our expected losses are within some desired range.

The first test of the piecewise ratio strategy was to examine the performance

against a naive player. These simulations produced desirable results. Namely, the

low ratios corresponded to essentially the same outcome as we found with the ratio

strategy vs. the naive strategy. We also found similar performance around mid-range

ratios. However, for large ratios we found a substantial increase in performance. While

many of the high ratios had performances around 40%, this was a substantial increase

over the roughly 10− 15% win percentages for the ratio strategy before the piecewise

component was introduced.

The next test for the piecewise ratio strategy was to perform simulations in

which the piecewise ratio strategy was posed against another player implementing the

piecewise ratio strategy. This scenario was the intention of the ratio strategy vs. the

ratio strategy in which we found many combinations of games to be non-terminating.

From the simulations featuring the piecewise ratio strategy vs. the piecewise ratio

strategy, we produced a surface plot of the results. The general theme of the results

was that low ratios performed adequately, while intermediate ratio values performed

strongly, and high ratio values performed reasonably well for their defensive nature.

From the change in strategies from the ratio strategy to the piecewise ratio

strategy, the biggest improvement was found to be with the defensive players. These

players essentially became offensive enough to be competitive, but maintained the

edge of defensiveness of not losing skirmishes frequently. To further examine the
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performance of defensive players under the piecewise ratio strategy, we performed

a series of simulations featuring a piecewise ratio strategy player with r = 2.5 and

another piecewise ratio strategy player with r = 10 which was given onset control of

continents. Our base of the two players interacting without continents showed that

the player with r = 2.5 strongly outperformed the other player.

When given the continent, however, the piecewise ratio strategy player with

r = 10 performed equally well or made at least a 10% improvement in overall win

percentage, including an improvement of up to nearly 45% with Europe. These

simulations were at least somewhat surprising. We have produced a strategy that is

reasonably adaptive and realistic, and also allows the player to perform well under

various circumstances. As desired, we produced a simple heuristic for play, with our

most complicated strategy effectively hinging on two requirements and producing win

percentages around 80% when paired with players using similar strategies. Perhaps

surprisingly, the findings of the piecewise ratio strategy indicated that a mix of luck

in holding continents and playing defensively is not a bad strategy. In general, we

find that defensive players should be more offensive and offensive players should be

slightly more defensive.

While our model did accomplish the classification task for which it was built,

certain limitations were introduced to make the project feasible. For one, we neglected

to implement the RISK cards at any point in our analysis (a feature which can swing

the outcome of the game quickly). Additionally, the important simplifying assumption

of two players is only mildly realistic. Furthermore, our player strategies did not

feature any sort of preference for territories. Any number of preferences could be

assigned based on our graphical findings. For example, a strategy which aims to

surround the opponent could be implemented. In real game play, a player is likely

to try to capture the remaining portions of a continent or deny an opponent such an
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opportunity. Also, in reality when a player holds a continent they will probably try

to protect it more than other areas of their control. We did not require this of our

strategies and doing so would likely increase the performance of continent-holding

players. While we could produce endless options to enhance our strategy definitions,

our current findings produce a valuable baseline for future work.

Another area in which our strategies could be improved is to apply some pref-

erence toward the order in which enemy territories are attacked. That is to say, we

left open the possibility for a player to commit to an attack with a force and that

force subsequently become stuck in an area surrounded by territories already held

by the same player(i.e. attacking your way into a corner of your own territories). A

more efficient player would attack with only as many units as necessary or attack

territories in a sequence that would leave the remaining force on the front line. This

problem could also be remedied by allowing players to make use of the reinforcement

phase, which would allow players to move units forward in the event that units became

isolated from enemy territories.

Another, perhaps more interesting possible modification would be to design

players to deliberately alter the draft number of the opposing player. For example,

if the enemy has 21 territories, then they draft 7 units. The other player could be

programmed to attack with purely the aim of reducing the territories of the enemy

to 20, then the enemy would only draft 6 units. A player strategy could be designed

to reduce enemy draft numbers in this fashion. An enemy could also do the same

thing for an opponent holding a continent. This is a realistic adjustment to make

for a player strategy. In all, there are many such modifications which could be made.

This is entirely reflective of the nature of human behavior in games which feature a

wide variety of options.

Moreover, we could further generalize our notions of strategies to include players
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acting with different strategies at different portions of the game. The strategies we

have designed allow a player to act a certain way for the entire game. An adaptive

element could prove helpful. For example, perhaps a player decides that playing

aggressively or defensively at the onset of the game somehow impacts performance

positively. Also realistically, perhaps a player realizes their loss is imminent and

commits to a Hail Mary series of attacks in an attempt to turn the game in their favor,

as opposed to waiting idly while the other player continues to outperform.

Given the variety and breadth of data we can collect from the model, the next

logical step in our analysis is to perform a modeling task on the data to either

understand the influence of the predictors from an explanatory perspective or to use

the predictors to build a predictive model. We opt to produce a predictive model

with the main method for analyzing data being a feed-forward single layer neural

network with weight decay. The decision to use such a model was based on several

factors. Foremost, the type of predictors we used was diverse. Many predictors we

used were count variables which potentially poses a problem to certain generalized

linear models. While extensions of generalized linear models exist to handle the use

of count predictors, we were less confident in their implementation due to relatively

little literature in this area.

Moreover, in many instances a number of the graphical predictors were highly

correlated with one another; this usually presents a problem in statistical modeling.

Typically, a neural network model handles such collinearity much more smoothly and

requires little intervention from the user. With modern applications ranging in the

millions for parameters, multicollinearity is often an assumed property of the set of

predictors. Moreover, the results of our analysis suggest the multicollinearity did not

have any noticeable adverse effects.

The statistical model built on data collected from our network model performed
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very well in classifying the outcome of games post hoc. While the main objective of

this analysis was to determine which player would win given the state of the predictors

at the end of the game, our model could be implemented on a turn-by-turn basis. We

could extract the predictors from our model at each time t, instead of cumulatively

at the end of a simulation, and use the predictor data available thus far in the game

to make a prediction on the outcome of the game. This would amount to producing

“in-game” probabilities. Given the neural network model for making predictions, we

would likely have trouble in interpreting which action would be best to make to produce

an optimal win percentage. However, this dilemma could be resolved by performing

simulations on each of the player’s available moves and acting in accordance with

the one that produces the highest win percentage. Overall, a wide range of possible

statistical excursions exist from the basis of our findings.



Appendix

Code for the simulation of RISK games can be found at

http://campus.murraystate.edu/academic/faculty/cmecklin/MunsonThesis/

JacobMunsonThesisCode.html.

The code represents a minimal reproduction of the contained work. The file

“RISK_Simulation.R” contains a wrapper function for implementing all code found

in “RISK_game_files.R”. Both files will need to be executed entirely to used the

simulations wrapper function.
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http://campus.murraystate.edu/academic/faculty/cmecklin/MunsonThesis/JacobMunsonThesisCode.html
http://campus.murraystate.edu/academic/faculty/cmecklin/MunsonThesis/JacobMunsonThesisCode.html
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