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ABSTRACT 

Reservoirs, including Kentucky Lake, are unique in that they do not follow a 

natural cycle of rising during the rainy seasons and dropping during the dry summers. 

The lake is manipulated, mainly for flood control and transportation, so that the water 

level is increased during the summer months and decreased during the winter months. 

This manipulation leaves the littoral sediment of the lake submerged in the summer and 

exposed in the winter. The seasonal water level, along with other factors, like farming 

practices in the watershed, contributes to the availability of nutrients for organisms 

inhabiting the sediment of the lake. However, the microbial communities of littoral zone 

sediments are not well understood. The Archaeal community of the Ledbetter Creek 

embayment, Kentucky Lake, has been the topic of study by several MSU students using 

sequence analysis of cloned 16S rDNA.  BLAST searches showed that species related to 

the methanogen Methanosaeta concilii were the most abundant Archaea in this 

environment in 2007.  Further, it was found that of the 59 M. concilii-like clones 

sequenced 50 were unique species (using 98.7% sequence identity as the cutoff).  The 

aim of the present study was to again examine the Archaeal community in this 

environment to determine whether Methanosaeta concilii-like species continue to 

dominate the Archaeal community and to compare these sequences to those found in the 

previous study.  DNA was extracted from sediment samples in 2011 & 2012; the 16S 

rDNA genes were amplified using Archaeal specific primers and cloned.  The cloned 

inserts were sequenced and compared to the Genebank database and the M. concilii-like 

sequences found previously.  The results from this study show that the Methanosaeta 

concilii-like species remain abundant in these samples, but are not the same species found 

before, using the 98.7% identity cutoff.  The results of this study also found that there is 

another group of archaea that were abundant in this environment, Methanoregula boonei-

like organisms. These data suggest that the Archaeal community is continually in flux in 

that the organisms are very closely related to those found in 2007 and may be derivatives, 

but the species change with time. 
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Chapter 1 

Literature Review 

ARCHAEA 

Before the late 1970’s evolutionary studies had been primarily confined to the 

metazoa and metaphyta, animals and plants, whose histories covered around 20% 

of the evolutionary time span.   In 1866, Ernst Haeckel challenged the plant/animal 

division of the living world, recognizing that the protists did not fit into either 

category.  He proposed that they had arisen separately from plants and animals.  

Haeckel’s tree of life therefore had 3 main branches instead of only two.  Later, in 

1938, Herbert Copeland split the tree further creating a fourth branch, creating a 

kingdom for bacteria.  In 1959, Robert Whittaker created a fifth branch to 

accommodate the fungi.  Whittaker’s scheme was the most widely accepted view of 

the organization of life, dividing the living world into five kingdoms – Plantae, 

Animalia, Fungi, Protista and Monera.  Many however believed it to be incorrect 

phylogenetically.  One such individual was Carl Woese [1].   In the 1970’s using 

ribosomal RNA analysis, Woese and his collogues first recognized Archaea as one of 

the three major monophyletic lineages.  Woese reclassified organisms into three 

domains instead of five kingdoms: Eucarya, which includes all eukaryotes, Bacteria, 

and Archaea [2].  This scheme is one that is most supported and accepted today. 



2 
 

 Utilizing phylogenetic analysis, we can see relationships between these three 

domains.  Phylogenetic trees (Fig. 1) based on rRNA sequences place Archaea and 

Eucarya on the same evolutionary branch, which suggests that Archaea, are more 

closely related to eukaryotes on a molecular level than they are to bacteria [1].   

Archaea have some characteristics that are unique to them, and they have 

combinations of characteristics that were once thought to be unique to either the 

Bacteria or Eucarya.  Members of the Archaea and Bacteria are united in the realm 

of prokaryotes by similarities in their cell size, lack of a nuclear membrane, and lack 

of organelles.  Archaeal genes also appear to be organized into Bacteria-like operons 

and many of the archaeal operons are arranged in a fashion like the operons and 

gene clusters of the Bacteria [3, 4].   Another similarity between Archaea and 

Bacteria is that archaeal mRNAs lack 5’-end caps.  Some have Shine-Dalgarno 

ribosome binding sites, but the locations of these Shine-Dalgarno sequences relative 

to the translational initiation codon are more variable in Archaea [5].  Several 

species of Archaea contain the bacterial cell division protein FtsZ, which is also 

thought to be a homolog of eukaryotic tubulins [6, 7].   Many members of Archaea 

contain a type II restriction enzyme system that is like those found in the Bacteria 

[8].  It was previously thought that both archaeal and bacterial protein-coding genes 

lack spliceosomal introns that are typically found in eukaryotic genes, but it has 

been shown that 16S and 23S rRNA of all Archaea, except Euryarchaeota, contain 

introns [9, 10].   Although the domains of Archaea and Bacteria seem to be very 

similar in some general genome organization, many of the archaeal genes show a 

greater similarity to eukaryotic homologs.  Early studies using antibiotics showed 
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genetic homology between the Archaea and the Eucarya [5].  For example, most 

bacteria are sensitive to streptomycin while Archaea and eukaryotes are both 

unresponsive to streptomycin.  Archaea and eukaryotes are both sensitive to DNA 

polymerase inhibitors, like the antibiotic aphidicolin, while bacteria are resistant to 

aphidicolin [11].   There is evidence that shows significant similarities between 

Archaea and eukaryotic DNA replication, translational and transcriptional 

components.  Archaeal DNA polymerases are homologous to eukaryotic DNA 

polymerases, neither of which are related to any bacterial DNA polymerases [12].  

Evolutionarily, the RNA polymerases of Archaea are closer to the RNA polymerases 

of Eucarya.  Phylogenetic trees constructed using the sequences for RNA polymerase 

subunits show that eukaryotic and archaebacterial genes are close relatives [13].  

The numerous differences between Archaea, Bacteria and Eucarya listed above are 

what is responsible for making Archaea a unique organism.  

 Currently there are three potential scenarios for the evolution of the three 

domains of life.  The first proposed scenario states that Bacteria diverged first from 

a lineage and produced Archaea and Eucarya.  A second scenario states that a proto-

eukaryotic lineage diverged from a prokaryotic lineage (Bacteria and Archaea).  The 

third scenario, the one considered to be the most highly provisional, states that 

Archaea diverged first from a lineage leading to the eukaryotes and the Bacteria.  

Since the Archaea branch off closest to the root of the tree depicted in figure 1, the 

third scenario seems to make the most sense [14]. 

 

 



4 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F
ig

u
re

 1
: U

n
iv

er
sa

l P
h

yl
o

ge
n

et
ic

 t
re

e 
o

f 
th

e 
th

re
e 

d
o

m
ai

n
s 

o
f 

li
fe

 b
as

ed
 o

n
 r

R
N

A
 g

en
e 

se
q

u
en

ci
n

g 
(B

ro
w

n
 1

9
9

7
).

  A
rc

h
ae

a 
d

iv
er

ge
d

 f
ro

m
 a

 li
n

ea
ge

 p
ro

d
u

ci
n

g 
E

u
ca

ry
a 

m
ak

in
g 

th
em

 m
o

re
 c

lo
se

ly
 

re
la

te
d

 t
o

 t
h

e 
E

u
ca

ry
a 

an
d

 n
o

t 
th

e 
B

ac
te

ri
a.

  
  



5 
 

 

 

Ecology 

 Archaea are known for their ability to live in environments that are 

considered uninhabitable and are known for their ability to dominate in these 

environments [15].  It was thought that Archaea only inhabited environments that 

were extreme: environments that had high salt concentrations, high and low pH, and 

high temperatures.  Recent studies have shown that Archaea occur in many “mild” 

environments as well.  These organisms exist in a wide variety of environments 

including ocean water, ocean sediment, gas hydrates (which is an ice-like mineral 

that crystallizes under conditions of low temperature, high pressure, and high gas 

concentrations), tidal flat sediments, freshwater lakes, soil, plant roots, petroleum-

contaminated aquifers, the human mouth and gut, continental shelf anoxic 

sediments, in moderate-temperature hydrothermal vent microbial mats, in 

association with metazoan species, and in symbiotic relationships with marine 

plankton [16-18].  Archaea occupy a significant fraction of the total microbiota 

present, typically around 10% of the total rRNA phylotypes are Archaea, with the 

remainder composed of bacteria [16].  Although Archaea make up a significant 

portion of the microbes present, the ecological roles of many of these organisms is 

still unknown. Archaea, for the most part, can be phenotypically categorized into 

one of four groups: the methanogens, the extreme halophiles, thermoacidophiles, 

and the extreme thermophiles.  Extremely halophilic archaea have been isolated 

from salterns, salt deposits, and landlocked seas.  The methanogens are strictly 
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anaerobic Archaea and have been isolated from diverse habitats including anoxic 

sediments, rice paddies, the rumen of cattle, the gut of termites, hydrothermal vents, 

and deep subterranean habitats.  The thermophiles and thermoacidophiles are the 

heat and acid loving Archaea respectively.  These organisms can be isolated from 

hydrothermal vents, hot springs, oil reservoirs, burning coal refuse piles and deep 

subterranean environments [2]. 

Taxonomy 

 Based on rRNA sequences, members of the domain Archaea phylogenetically 

fall into different distinct groups or kingdoms.  It was previously thought that there 

were only two kingdoms, Crenarchaeota and Euryarchaeota, in which Archaea could 

fall, but in 1996 Barns, et al.  proposed the existence of a third kingdom [19].  Their 

Ribosomal RNA studies showed that one group, pJP27/pJP78, did not associate with 

the two known kingdoms of Archaea phylogenetically, but they branched off below 

the Crenarchaeota-Euryarchaeota divergence.  These organisms, which were 

isolated from a hot spring in Yellowstone National Park, were assigned their own 

kingdom, the Korarchaeota.  Three kingdoms are currently recognized, but 

Crenarchaeota and Euryarchaeota are considered the two main kingdoms.  The 

Euryarchaeota kingdom is phenotypically diverse and consists of the methanogens 

and their relatives.  This kingdom is comprised of extreme halophiles, sulfate-

reducing species, and two types of thermophiles [1].  The Crenarchaeota kingdom is 

not phenotypically diverse and consists mainly of thermophilic species such as the 

thermoacidophiles, sulfur-dependent archaebacteria, and extreme thermophiles.  

This kingdom is relatively homogeneous physiologically [1].   Although this group is 
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mainly thermophilic there have been recent studies that have found the existence of 

non-thermophilic Crenarchaeota that have symbiotic relationships with plankton 

and that is associated with marine sponges and in sea ice.  These Crenarchaeota 

thrive in frigid waters and sea ice, where they are present in significant numbers 

[20].  Because there are thermophilic species in both the Crenarchaeota and 

Euryarchaeota kingdom, thermophily is considered to be the ancestral phenotype of 

the Archaea [1]. 

 The kingdom Crenarchaeota consists of only one class, the Thermoprotei.  

This class is subdivided into three orders: the Thermoproteales, the 

Desulfurococcales, and the Sulfolobales.  As of 2001, when Bergeys Manual was 

published, there were around forty known species of Crenarchaeota.  

Thermoproteales consists of eight of the known species, all of which are rod shaped 

and are hyperthermophilic.  There are two families in the Thermoproteales order, 

Thermoproteaceae and Thermofilaceae.  The Thermoproteaceae family contains four 

genera.  Genus I, Thermoproteus, contains three species.  Genus II, Caldivirga, 

contains one species.  Genus III, Pyrobaculum, contains three species.  Genus IV, 

Thermocladium, contains one species.  The Thermofilaceae family consists of one 

genera, Thermofilum, with no defined species.  The Thermoproteus and Thermofilum 

genera are two of the most studied genera within this order; both genera have been 

isolated from neutral or slightly acidic hot springs.  The second order, 

Desulfurococcales, consists of seventeen species and two families: 

Desulfurococcaceae and Pyrodictiaceae.  The first family, Desulfurococcaceae, 

consists of eight genera.  Genus I, Desulfurococcus, consists of four species.  Genus II, 



8 
 

Aeropyrum, consists of one species.  Genus III, Ignicoccus, consists of two species.  

Genus IV, Staphylothermus, genus V, Stetteria, genus VI, Sulfophobococcus, genus VII, 

Thermodiscus, and genus VIII, Thermosphaera, all consist of one species.  The second 

family, Pyrodictiaceae, consists of 3 genera.  Genus I, Pyrodictium, consists of three 

species.  Genus II, Hyperthermus, and genus III, Pyrolobus consist of only one specie 

each.  Organisms belonging to the genus Desulfurococcales have been isolated from 

volcanic habitats, which include deep-sea hydrothermal vents, and shallow water 

thermal springs.  The last order, Sulfolobales, consists of fifteen species, one family 

and 6 genera.  Genus 1, Sulfolobus, consists of six species.  Genus II, Acidianus, 

consists of three species.  Genus III, Metallosphaera, consists of two species.  Genus 

IV, Stygiolobus, and genus V, Sulfurisphaera, consists of one species.  Lastly, genus VI, 

Sulfurococcus, consists of two species.  Sulfolobus and Acidianus appear to be the two 

key genera within this family and have been isolated from volcanic habitats [21].  

The Crenarchaeota that have been found to inhabit colder waters have not yet been 

cultured and what is known about them is information provided by 16S rRNA 

analysis [20]. 

 The second kingdom of Archaea, Euryarchaeota, is much larger and more 

diverse than the Crenarchaeota kingdom.  This kingdom currently consists of seven 

classes: the Methanobacteria, the Methanococci, the Halobacteria, the 

Theroplasmata, the Thermococci, the Archaeoglobi, and the Methanopyri.  As of 2001 

there were 138 species of Euryarchaeota that have been identified.  Within the 

Methanobacteria class there are five orders: Methanobacteriales, Methanococcales, 

Methanomicrobiales, Methanopyrales, and Methanosarcinales.  The order 
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Methanobacteriales consists of two families, Methanobacteriaceae and 

Methanothermaceae, and twenty-five species.  The Methanococci class consists of 

three orders: Methanococcales, Methanomicrobiales, and Methanosarcinales.  

Methanococcales consists of two families, Methanococcaceae and 

Methanocaldococcaceae, and eight species.  Methanomicrobiales consists of three 

families, Methanomicrobiaceae, Methanocorpusculaceae and Methanospirillaceae, 

and twenty-three species.  Methanosarcinales consists of eighteen species and six 

families: Methanosarcina, Methanococcoides, Methanohalobium, Methanohalophilus, 

Methanolobus, and Methanosalsum.  Organisms in the Methanobacteriales, 

Methanococcales, Methanomicrobiales, and Methanosarcinales orders are all obligate 

anaerobes that are capable of producing methane as part of their metabolism.  As of 

2001, there have been approximately 100 species of methanogens identified [21].  

These organisms have been isolated from many different habitats including animal 

digestive tracts, hydrothermal vents, and anoxic sediments [20]. 

 The Halobacteria class of Euryarchaeota contains a diverse group that 

inhabits environments that are high in salt.  These are the extreme halophiles and 

haloalkaliphiles.  In order for an organism to be considered an extreme halophile it 

must require at least 9% NaCl for growth.  Most species of extreme halophiles 

require 12-23% NaCl for optimal grown and virtually all extreme halophiles can 

grow at a concentration of 32% NaCl [20].  Currently there are 35 species of 

Halobacteria that have been identified.  This class consists of one order, 

Halobacteriales, which has one family, Halobacteriaceae.  This family consists of 

fourteen genera: Halobacterium, Haloarcula, Halobaculum, Halococcus, Haloferax, 
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Halogeometricum, Halorubrum, Haloterrigena, Natrialba, Natrinema, 

Natronobacterium, Natronococcus, Natronomonas, and Natronorubrum [21].  Species 

from this class have been isolated from environments that are naturally salty, such 

as solar salt evaporation ponds and salt lakes, and artificial saline habitats, such as 

the surfaces of foods that are heavily salted [20].   

The Thermoplasmata class also consists of one order, Thermoplasmatales, 

and this order has two families, Thermoplasmataceae and Picrophilaceae.  There are 

only three genera and four species that have been described for this class [20].  

Organisms belonging to this class are among the most acidophilic of all known 

microorganisms, some being able to live at a pH below 0.  These organisms have 

been isolated from environments that have low pH and high temperatures including 

coal refuse piles, mine tailings, and acidic Japanese solfataras [20].  The 

Thermococci class contains one order, Thermococcales, which contains one family, 

Thermococcaceae.  There are only two genera known for this class.  The first genus, 

Thermococcus, consists of fifteen known species.  The second genus, Pyrococcus, 

consists of five species.  Organisms belonging to this class are hyperthermophilic 

heterotrophs and most need sulfur for growth and require 75˚C to 100°C for optimal 

growth.  These organisms have been isolated, mainly, from deep-sea and shallow 

marine hydrothermal vents and terrestrial thermal springs [21].   

The sixth class, Archaeoglobi, consists of one order, Archaeoglobales, and one 

family, Archaeoglobaceae.  There are two known genera in this class: Archaeglobus, 

which contains four species, and Ferroglobus, which contains only one species [21].  

Organisms belonging to this class are hyperthermophilic and they catalyze 



11 
 

anaerobic respiration where elemental sulfur is used as an electron acceptor 

causing it to be reduced.  Species belonging to this class have been isolated from 

shallow marine hydrothermal vents, and hot marine sediments near hydrothermal 

vents [20].  The last class, Methanopyri, also consists of one order, Methanopyrales, 

and one family, Methanopyraceae.  There is one genus, Methanypyrus, and one 

species known in this class [21].  Methanopyrus has been isolated from hot 

sediments near submarine hydrothermal vents and from the walls of black smoker 

hydrothermal chimneys.  These organisms grow rapidly at temperatures greater 

than 100°C but will not grow at temperatures lower than 80°C [20]. 

Archaea have previously been divided into four groups, Group I- IV.  Groups I 

and II appear to be the most abundant, widely distributed and ecologically diverse, 

which has made them the easiest to study [18].  Group I Archaea have been found in 

both terrestrial and marine environments.  This group is related to Crenarchaeota 

and it is thought that they could comprise as much as 20% of total microbial 

biomass found in the world’s oceans.  Groups II and III are related to Euryarchaeota.  

Group III Euryarchaeota have been found in waters below the photic zone and are 

peripherally related to the order Thermoplasmatales [2].  They can also be found in 

marine sediments and marine plankton [18].  The Group IV Euryarchaeota inhabit 

deep ocean waters and are related to haloarchaea [2].   

While there is a wide array of methane producing Archaea, it is important to 

note that methanogen is not a phylogenetic group or even a taxon. Methanogen is 

simply a description based on the end product of their metabolic processes. 
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METHANOGENS 

Methanogenic Archaea is a diverse group of Euryarchaeota that are strictly 

anaerobic organisms with an energy metabolism that is restricted to the formation 

of methane from formate, methylamines, methanol, CO2 and H2, and/or acetate [22].  

Studies show that methane is more than 20 times more effective as a greenhouse 

gas than carbon dioxide and methane can persist in the atmosphere for 9-12 years 

[23].  It has also been estimated that 1 billion tons of methane is formed globally per 

year by methanogenic Archaea in different environments.  This means that 2% of 

the net CO2 that is fixed annually into biomass by photosynthesis would end up as 

methane [22].  Around 70% of methane arises from four main sources: natural 

wetlands and tundra, rice paddies, ruminants, and fossil fuels [23].  Most of the 70% 

of methane emitted is derived from biological methanogenesis [24].  In the last 200 

years, the atmospheric concentration of methane has increased threefold.  With this 

increase in methane present in the environment, the study of methanogens has 

become increasingly important. 

Methanogens have been cultivated from a wide variety of environments.  

They are common in environments with extreme temperatures, salinity and pH as 

well as temperate and other mild habitats.  Methane producing Archeae are unique 

in that they are the only group of organisms that have species that are capable of 

growth at 0°C and others at 110°C [25].  Common methanogen habitats include 

marine sediments, freshwater sediments, flooded soils, human and animal 

gastrointestinal tracts, termites, anaerobic digesters, landfills, geothermal systems, 
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and heartwood of trees [24].  Methanogenic Archaea are known as being slow 

growing and are strictly anaerobic, requiring nutrients and trace elements that 

make them hard to cultivate [26].  The use of 16S rRNA analysis overcomes this 

difficulty because it can be carried out without cultivation, making this method a 

powerful tool for the analysis of methanogens [27].   

Morphology 

 Methane producing Archaea are diverse and their diversity is dramatically 

illustrated by their variety of morphological, physiological, and biochemical 

characteristics.  Methanogens exhibit a wide range of cellular morphologies, 

including cocci, packets of cocci (referred to as pseudosarcina), rods of varying 

length and shape, and spirillum [28].  Some species exist in irregular, unusual 

flattened plates.  Some species can aggregate in clusters.  Motility is present in some.  

The gram reaction for methanogens can be either positive or negative even within 

members of the same genus [29].  The composition of the cell envelopes in 

methanogenic Archaea are very different from that of Bacteria and are diverse 

among the methanogens.  Methanogen cell envelopes lack murein, which is the 

peptidoglycan found in Bacteria cell walls, instead they contain pseudomurein or 

protein subunits depending on the order.  This lack of murein renders methanogens 

insensitive to the antibiotics like penicillin that inhibit the synthesis of cell walls in 

Bacteria.  The lipids found in the cell envelopes are also unusual and the polar lipids 

of methanogens are unlike membrane glyco- and phospholipids of Bacteria.   
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Methanogenesis 

 Methanogens are a phylogenetically diverse group, but they are a rather 

uniform group of strictly anaerobic Archaea nutritionally.  These organisms are able 

to grow by the conversion of certain compounds to methane.  This simple pathway 

is coupled to the generation of ion gradients across the membrane that is used to 

drive the synthesis of ATP [30].  The methanogens are the only known 

archaebacteria that couple methane synthesis to energy generation [28].  

Methanogenesis is really not a form of anaerobic respiration although it is a type of 

energy generating metabolism that needs an outside electron receptor in the form of 

CO2. Although methanogens are similar nutritionally and all employ similar 

pathways, they differ significantly in regards to what compounds are involved in the 

proton motive electron transport chain, and because of this they most likely use 

different mechanisms to generate the proton gradient [30].    

The 83 species of methanogenic Archaea that have been described as of 2000 

have been divided into three classes, or main nutritional categories, based on the 

substrate used in methanogenesis (Fig. 2).  The first nutritional category consists of 

61 species of hydrogenotrophs, which oxidize H2 and reduce CO2 to form methane, 

and 38 species of formatotrophs, which oxidize formate to form methane.  The 

second nutritional category consists of twenty species of methylotrophs, which use 

methyl compounds to make methane.  The third nutritional category consists of nine 

species of acetotrophic methanogens, which use acetate to produce methane.  There 

are some species of methanogens that share nutritional characteristics and 

therefore cannot be placed in one single group [29]. 
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Figure 2: The three pathways of methanogenesis.  The red arrows represent the 
hydrogenotrophic pathway. The green arrows represent the methylotrophic 
pathway and the blue arrows represent the acetoclastic pathway [24]. 
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Methane can be produced via three different pathways (Fig. 2).  These pathways 

differ in the substrates used.  The three major substrates utilized are CO2, methyl-

group containing compounds, and acetate [24].  The first pathway is the 

hydrogenotrophic pathway.  Most methanogens are hydrogenotrophs that can 

reduce CO2 to methane, making this pathway the most widespread and it can be 

found in all methanogenic orders.  This pathway involves the reduction of CO2 with 

H2 as an electron donor [31].  The second pathway is known as the methylotrophic 

pathway.  This pathway has several variants; the best studied being the version 

where C-1 compounds such as methylamines or methanol can be used as both an 

electron donor and an electron acceptor [31].   

 The third and final pathway is the acetoclastic pathway.  This pathway 

utilizes acetate, which is a major intermediate in the anaerobic food chain and as 

much as two-thirds of biologically produced methane is derived from acetate [24].   

Based on free energy values for methanogenesis reactions, the most favorable 

reaction is the reduction of CO2 by H2 and the least favorable is the acetoclastic 

reaction (Table 1).  This has led to a natural selection pressure that has resulted in 

the evolution of many more hydrogenotrophic species than acetotrophs.  The large 

number of species within the first class of methanogens also illustrates this.  

Because there is no selection pressure in favor of acetotrophs, there is less 

evolution, which has led to a decrease in species diversification for this group.  The 

low number of species within the third class of methanogens illustrates this [24].  

 Taxonomy 
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Phenotypic characteristics are often not sufficient in means of distinguishing taxa or 

determining the phylogenetic position of a taxon [32].  The methanogens were the 

first microbial group to have their taxonomy based on 16S rRNA sequence 

divergence [33].  Methanogens, classically, were grouped into one of three orders 

based on work done by Balch et al.  in 1979 [32].  They had proposed a taxonomic 

revision of methanogens based on 16S rRNA oligonucleotides and placed the 13-

available species at the time into three orders, four families, and seven genera.  In 

1988, Boone and Whitman proposed a minimal standard for describing new 

methanogenic taxa [33].  These minimal standards include morphology, Gram 

staining, culture purity, electron microscopy, motility, colony morphology, 

susceptibility to lyse, nutritional spectrum, growth rates, end products, antigenic 

fingerprinting, G+C content of the DNA, growth conditions, lipid analysis, nucleic 

acid hybridization, distribution of polyamines, 16S rRNA sequencing, and sequence 

analysis [33].  These criteria were approved and accepted by the Subcommittee for 

Taxonomy of Methanogens and based on these criteria, Boone et al.  could define 

five orders consisting of ten families and 31 genera and (as of 2000) 74 validated 

species (Fig. 3) [29, 33].  The five orders are Methanobacteriales, Methanococcales, 

Methanomicrobiales, Methanosarcinales, and Methanopyrales, all of which belong to 

the kingdom Euryarchaeota and the phylum Euryarchaeota. The Methanobacteriales 

order encompasses the non-motile methanogens.  Members of this order generally 

use CO2 as the electron acceptor and H2 as the electron donor to produce methane.  

This order is divided into two families, Methanobacteriaceae and 

Methanothermaceae.  The family Methanobacteriaceae contains four genera:   



19 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 F
ig

u
re

 3
: P

h
y

lo
ge

n
y 

o
f 

m
et

h
an

o
ge

n
s,

 p
ro

p
o

se
d

 b
y 

B
o

o
n

e 
et

 a
l. 

 L
ar

ge
 t

ri
an

gl
es

 r
ep

re
se

n
t 

n
o

n
-

m
et

h
an

o
ge

n
s 

w
h

ic
h

 w
er

e 
u

se
d

 t
o

 h
el

p
 r

o
o

t 
th

e 
tr

ee
 [

3
5

].
 F

ig
u

re
 s

h
o

w
s 

th
e 

d
if

fe
re

n
t 

o
rd

er
s 

o
f 

M
et

h
an

o
ge

n
s 

an
d

 t
h

e 
m

em
b

er
s 

o
f 

ea
ch

 o
rd

er
. 



20 
 

 

Methanobacterium, Methanobrevibacter, Methanosphaera, and 

Methanothermobacter.  The first genus, Methanobacterium, contains 13 species, all 

of which use H2 and CO2 for methanogenesis and six species can utilize formate.  All 

cells within this genus are rod or filamentous in morphology.  Some of the species 

are thermophilic and a few are acidophilic.  These organisms can be found in 

freshwater habitats.  The Methanothermobacter genus was created to include three 

species of thermophilic methanogens.  Methanobrevibacter contains seven species 

that are neutrophilic mesophilic short rods, which often form pairs or chains.  Each 

of the species in this genus inhabits a specialized habitat, including bovine rumen, 

sewage sludge, and intestinal tracts of human and animals.  The last genus, 

Methanosphaera, contains two species, both of which are Gram-positive spherical-

shaped organisms that are generally observed in the digestive tracts of animals and 

have been isolated from human and rabbit feces.  The family Methanothermaceae 

contains only one genus, Methanothermus, and two species.  Both species are 

extreme thermophiles and have been isolated from only a specific habitat, volcanic 

springs.  These species have cells that are rod shaped and these cells contain a 

double-layered cell wall [29].   

 The order Methanococcales consists of two families and four genera.  

Members of this order are hydrogenotrophic methanogens that have been isolated 

from marine and coastal environments.  All species in this order are irregular cocci 

and contain proteinaceous cell walls.  Species are also motile by a polar tuft of 

flagella and cells lyse quickly in detergents.  All species use both H2 and formate as 
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the electron donors for methanogenesis.  The two families in this order are 

Methanococcaceae and Methanocaldococcaceae.  The Methanococcaceae family is 

comprised of two genera.  The Methanococcus genus includes five species, all of 

which are mesophilic.  The Methaothermococcus genus includes one thermophilic 

species.  The Methanocaldococcaceae family includes two thermophilic genera, each 

of which contains one species: Methanocaldococcus jannaschii and Methanoignis 

igneus [29]. 

 The third order, Methanomicrobiales, is comprised of three families and nine 

genera of methanogens that are hydrogenotrophic.  The first family is 

Methanomicrobiaceae, which contains seven of the genera.  Members of this family 

have a variety of different morphologies including small rods, irregular cocci, and 

plane-shaped cells.  The cell walls of members of this family are proteinaceous.  

Most of the strains in this family can utilize formate and some secondary alcohols 

for methanogenesis.  The genus Methanomicrobium contains one mesophilic species, 

which has been isolated form bovine rumen.  The genus Methanolacinia contains 

three reclassified species that have been isolated from marine sediments and are 

unable to use formate.  The genus Methanogenium contains five species that are 

Gram-negative, non-motile, cocci.  Species in this genus have been isolated from 

thermophilic species.  The five-mesophilic species can use formate for 

methanogenesis.  The genus Methanoplanus is comprised of three species of 

organisms that are plane-shaped and have a polar tuft of flagella.  These organisms 

use formate for methanogenesis.  One species in this genus is an endosymbiont of 

marine ciliates and has been found in close association with microbodies, which are 
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thought to provide hydrogen to the methanogen.  The genus Methanofollis contains 

two species, which can use formate to make methane.  The last genus, 

Methanocalculus, is a newly described genus that consists of one species, M.  

halotolerans, an irregular coccoid that was isolated from an offshore oil well.  This 

methanogen is a hydrogenotrophic halotolerant organism that grows optimally at 

5% NaCl and will tolerate up to 12% NaCl.  The second family in this order, 

Methanocorpusculaceae, contains one genus, Methanocorpusculum, and five species.  

All species are mesophilic, small coccoid methanogens with monotrichous flagella.  

These species use H2/CO2 and formate for methanogenesis and some species can 

use 2-propanol/CO2.  The last family, Methanospirillaceae, consists of one genus, 

Methanospirillum.  Members of this genus have been isolated from various habitats 

and are mesophilic.  Only one species in this genus has been described so far, 

Methanospirillium hungatei.  This species uses H2 and CO2 as well as formate for 

methanogenesis.  Some strains can use 2-propanol and 2-butanol along with CO2 

[29]. 

 The fourth order, Methanosarcinales, was created to regroup all the 

acetotrophic and methylotrophic methanogens.  This order consists of two families.  

The first family, Methanosarcinaceae consists of six genera and 21 species.  The 

genus Methanosarcina is comprised of eight species of Gram-positive, non-motile, 

acetotrophic methanogens.  This genus predominates in many anaerobic 

ecosystems where organic matter is completely degraded to CH4 and CO2 [29].  

Members of this genus have been isolated from freshwater and marine mud, anoxic 

soils, animal-waste lagoons, and anaerobic digesters.  Some species can use H2 and 
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CO2, acetate and methyl compounds for methanogenesis making these species 

versatile.  All eight species exhibit a pseudo sarcina, or cube like, cell arrangement 

and morphology.  The remaining five genera are methylotrophs, meaning they 

utilize only methanol and methylamine for methanogenesis.  These genera are all 

non-motile, most are mesophilic and species have cell morphologies that are 

irregular coccoid.  Most organisms in these genera have been isolated from high salt 

concentration environments.  The genus Methanolobus consists of five species, 

which grow optimally when the NaCl concentration is around 0.5 M.  The genus 

Methanococcoides has two species whose growth is optimal in NaCl concentrations 

of 0.2-0.6M and high concentrations of magnesium are required for growth.  This 

genus includes the species Methanococcoides burtonii which was first isolated from 

Ace Lake in Antarctica and the optimum temperature for this organism is 23°C, but 

it survives at a range of 4°C-29°C.  The genus Methanosalsus contains one species.  

This species is an alkaliphilic, halophilic species that was isolated from an Egyptian 

Lake.  The last genus, Methanohalobium, consists of one species that is extremely 

halophilic and grows optimally at 25% NaCl and 50°C [29]. 

 The last order, Methanopyrales, represents a novel group of methanogens 

which grow at 110°C and are unrelated to all other known methanogens.  This order 

consists of one family, Methanopyraceae, which includes only one species, 

Methanopyrus kandleri.  This species is a Gram-positive hydrogenotrophic, 

hyperthermophilic archaeum that has been isolated from hydrothermally heated 

deep-sea sediments as well as a shallow marine hydrothermal system [29].   

Ecology 
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 The distribution of methanogens in the environment is dependent on many 

different factors including temperature, pH and salinity.  Most of the methanogens 

grow within a narrow pH range, from 6.0 to 8.0.  There are some exceptions to this 

and there are a few species that can tolerate pH’s outside of this range.  

Methanogens can grow at a much wider temperature range, which ranges from 0°C 

to 110°C.  Tolerance to salt concentrations is variable depending on which species of 

methanogen is being considered.  Marine methanogens tend to inhabit 

environments with higher salt concentrations since they tend to be more halophilic 

[29]. 

 A variety of substances have been found that act as metabolic inhibitors for 

methanogens.  These inhibitors play an important role ecologically because they can 

greatly reduce the distribution of methanogens.  Many of the chemical substances 

are toxic and can physiologically block methanogenesis.  Methanogenesis is 

sensitive to chlorinated methanes, ethylene, acetylene, monensin, and possibly 

heavy metals.  Methanogens are also strict anaerobes and are very sensitive even to 

levels of oxygen less than 10 ppm.  Levels of oxygen greater than 10 ppm can cause 

an irreversible dissociation of the F420-hydrogenase enzyme complex.  This result 

probably occurs due to the lack of protective superoxide dismutase that removes 

superoxide free radicals produced by reactions involving molecular oxygen [29].  

Methanogens are abundant in habitats where electron acceptors other than CO2 are 

limiting.  When these limited electron acceptors, like O2, NO3-, Fe3+ and SO42-, are 

present, methanogens are outcompeted by the bacteria that utilize them, thus 

preventing the occurrence of methanogenesis [24]. 
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 In many natural environments containing complex organic compounds, 

where light, sulfate, and nitrate are limited, the methanogens will cooperate with 

other chemoheterotrophic bacteria in the process of degrading organic substances.  

The last step in a series of reactions by which organic compounds are degraded is 

marked by the production of methane and CO2; methanogens occupy this terminal 

position in the breakdown of organic matter.  Methanogens can use H2 and CO2, as 

well as formate or acetate, which are produced by fermentative bacteria.  

Methanogens have also been known to form obligate associations with obligate 

hydrogen producing acetogenic bacteria; this association is known as syntrophy, 

taking part in interspecies hydrogen transfer [34].  Eleven species of syntrophic 

bacteria have been previously described as partnerships of methanogens [29].   

 In their natural environments, methanogens must compete for substrates 

that are required and are necessary for methanogenesis.  This is especially evident 

in sulfate and nitrate rich environments.  In these environments, the methanogens 

are outcompeted by sulfate reducing bacteria and nitrate reducing bacteria [35].  

These bacteria are more efficient thermodynamically and therefore have a higher 

affinity for H2 and higher growth yields [34].  Although methanogens are 

outcompeted in these environments, small amounts of methane can still be detected.  

This is most likely because methanogens can utilize substrates that bacteria, like 

sulfate and nitrate reducing bacteria, cannot include methanol, methylamines, and 

methionine [35].  By forming symbiotic methanogenic associations and through 

anaerobic microzones, methanogens can potentially overcome competition for 

available substrates [28]. 



26 
 

 Methanogen distribution in natural environments is completely dependent 

on their ability to adapt to certain factors, like temperature, chemical 

concentrations, and even flooding regimes.  For example, two thirds of biogenic 

methane are derived from acetate and in environments where there are higher 

concentrations of acetate, species with higher acetate thresholds tend to prevail 

[36].  Two genera that can utilize acetate for methanogenesis are the Methanosaeta 

and the Methanosarcina.  The Methanosarcina are obligate acetotrophs, while the 

Methanosaeta are not. They can use acetate, H2 and CO2, and formate for 

methanogenesis.  In 1998, Grobkopf and colleagues conducted a study that found 

that the Methanosarcina had a higher threshold for acetate than the Methanosaeta 

[37].  This indicates that the Methanosarcina require a higher concentration of 

acetate in order for methanogenesis to occur.  The Methanosaeta do not require as 

high a concentration.  Methanosaeta use the acetyl CoA synthetase enzyme to 

activate acetate.  This enzyme is functional and effective when there are low acetate 

concentrations, which is potentially why Methanosaeta have a lower acetate 

threshold.  Methanosarcina, on the other hand, use acetate kinase to activate acetate 

and this enzyme is not effective when there are low concentrations of acetate [38].  

Other studies conducted have found that acetate concentrations increased with soil 

depth but methane emissions decrease with soil depth.  As soil depth increases, all 

other available substrates for methanogenesis decrease until acetate is the only 

substrate left, and there are only certain methanogens that can utilize acetate for 

methanogenesis.  This decreased the amount of methanogenesis occurring thus 

decreases methane emissions [38].   
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 Another factor that can determine the diversity of methanogens is 

temperature.   Temperature is an important regulator of microbial activity involved 

in methane production.  One study conducted by Chin, et al. found that as the 

temperature decreased from 30°C to 15°C, the amount of methane and H2 produced 

also decreased and there was an increase in acetate [39].  When there were 

decreases in temperature the degradation pathway of organic matter changed and 

led to an accumulation of acetate, propionate, caproate, lactate and isopropanol.  

This change also led to a decrease in H2 partial pressures.  This suggested that at 

lower temperatures acetotrophic methanogenesis predominates.  During the initial 

sampling for this study, they found members of the families Methanosarcinaceae, 

Methanobacteriaceae, Methanosaetaceae, and Euryarchaeotal Rice Clusters I and IV.  

When these samples were incubated at 15°C they found that same organisms were 

present but noticed there was an increase in the abundance of Methanosarcinaceae 

and Methanocellales.  When the samples were incubated at 30°C the only organisms 

that were dominant were ones belonging to the family Methanosarcinaceae and 

Euryarchaeotal Rice Cluster I.  This illustrates that with the change in temperature 

there is also a change in the abundance and diversity of methanogenic species [39]. 

 Flood patterns can also have an effect on the microbial community diversity.  

A study conducted by Kemnitz, et al.  found that the diversity of methanogenic 

species increased as flood frequency increased [38].  In sites that were permanently 

flooded they found members of Methanomicrobiaceae, Methanobacteriaceae, 

Methanosarcinaceae, Methanosaetaceae, and Euryarchaeotal Rice Clluster III, IV, and 

VI.  In sites that were rarely flooded they found only members of 
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Methanomicrobiaceae and Euryarchaeotal Rice Cluster IV.  In this study, they 

amplified the mcrA gene which codes for methyl coezyme-M reductase and can be 

used as an alternative to 16S rRNA sequences [40].  Kemnitz et al.  found that 

amplification of this gene was difficult from sites that were rarely flooded and that 

almost no PCR product was obtained [38].  This could have been because 

methanogens were less abundant in these sites.  As the flooding frequency increased 

so did the diversity of Archaea and the abundance of Archaea in that environment. 

 Studies have also shown that the change in seasons can affect the diversity of 

species in sediment.  Changes have been noted between summer and winter.  During 

summer months, the methanogenic community in the sediment was composed 

primarily of members from the Methanosarcinaceae family.  During the winter 

months, the community was composed of members of the Methanococcaceae, 

Methanobacteriaceae and Methanothermaceae families [41]. 

 Methanogens can inhabit a wide variety of environments, including 

freshwater and marine sediments, marshes, swamps, sludge, rice soils, and 

intestinal tracts of almost all living creatures.  Some of the factors that determine 

where methanogens will inhabit are known, like pH and temperature, but there are 

many factors that are likely not yet known.  As more research is done regarding 

Archaeal diversity in the environment, more species will be identified and with that 

identification there is more we will be able to learn about these unique organisms 

and the factors that determine their optimal natural environments. 

Methanogen community in Kentucky Lake  
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In 2007, Margaret Grosser characterized the Archaeal community of the 

littoral zone of the Ledbetter Creek embayment of Kentucky Lake to determine if 

changes in the community occurred seasonally due to the manipulation of the water 

level [42].  Sediment samples were taken from five sites within the flood plain of the 

embayment, one terrestrial site above the littoral zone and one site within the 

embayment monthly.  DNA was extracted and the rRNA genes were amplified using 

Archaeal 16S rRNA specific primers.  The amplified fragments were cloned to 

separate individuals and well isolated colonies picked and preserved. Plasmid DNA 

with inserts were isolated and the Archaeal DNA reamplified by PCR. This DNA was 

subjected to fingerprinting by digestion it with restriction endonucleases and run on 

polyacrylamide gradient gels. Clones giving the same fingerprints were considered 

to be the same species. One insert from each fingerprint group was sequenced and 

the sequences compared to the database of 16S rRNA genes to identify the organism 

by BLAST search. Eighty-four sequences total were identified.  These sequences 

showed an identity greater than 91% to 10 methanogenic species of Archaea and 

five species of uncultured Archaea.  All the organisms that Grosser identified were 

methanogens [42].  Grosser also performed community fingerprinting of Archaeal 

16S rRNA genes by digesting the amplified sediment DNA from each of her seven 

sites (five littoral zone sites, one embayment site, and one terrestrial site) monthly 

for a year and comparing them. These comparisons showed that there were no 

differences within the littoral zone community (site-to-site) or between the 

embayment community and the littoral zone community, but there was a significant 

difference between the terrestrial community and the sediment community.  
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Grosser also found that there were significant differences in the community 

between different months throughout the year [42].  

 In 2011, Xuelian Chen set out to analyze the sequences of the remaining 

clones that Grosser did not examine to determine whether clones with the same 

fingerprint were actually the same species [43]. Chen purified and sequenced DNA 

from 59 clones that were identified as Methanosaeta concilii-like. The sequences 

were then compared to known sequences in the Genebank database by conducting 

BLAST searches. Chen found that the 59 clones were amplified from 50 different 

species that fell into the genus Methanosaeta and four other genera [43]. She used a 

similarity index of 98.7 as the limit for species level and 87 for a limit at the genus 

level [43].  

The purpose of the study was to determine if the Archaeal community of the 

littoral zone of the Ledbetter Creek embayment at Kentucky Lake was still primarily 

dominated by the Methanosaeta concilii-like species as determined to be in previous 

studies 9 years earlier. Using the same technique of amplifying rRNA genes, cloning, 

sequencing, and BLAST analysis the Archaeal species present now will be identified.    
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Chapter II 

 
Materials and Methods 

 
 
 Throughout the project the water that was used was either included in kits or 

purchased from Fisher and was molecular biology grade. Other chemicals, not 

included in kits, were of highest grade available from Fisher or Sigma-Aldrich. 

 
 
Sample Collection 
 

 Sediment samples were collected from the Ledbetter Creek Embayment 

study site twice a year (Fig. 4).  The sample site was located along a transect within 

the mudflat of the littoral zone.  There are five sites total along the transect that are 

marked by wells that had been placed there for previous studies (Fig. 4).   

Sediment samples were collected from within two feet of the well that marked the 

second sample site along the transect.  One sample was taken during the summer 

pool in August 2011 and one sample was taken during the winter pool in January 

2012.  The top two centimeters were removed, and the samples were taken from the 

next five centimeters.  A sterile 60 ml centrifuge tube was filled with the sediment 

and the sample was kept on ice and returned to the laboratory where it was kept 

frozen at -20C until use. 
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 A       

B 

Figure 4: A.  Aerial view of the Ledbetter Creek Embayment (Google maps).  B.  
Ledbtter Creek Embayment in more detail.  C. shows the locations of the 5 wells that 
span the littoral zone of the embayment (1).  Samples were taken near well-set 2. 
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DNA Extraction 
 
DNA was extracted from the sediment using a PowerSoil DNA Isolation Kit 

(MoBio) and a BIO 101 Fast Prep Machine set at a speed of 6.0 for 40 seconds. 

Isolated DNA was quantified, and the resulting quantification ranged from 67 to 112 

ng/l.   

PCR Amplification 

 The extracted DNA was used as the template in Polymerase Chain Reactions 

(PCR).  The amplification was accomplished using nested primers.  For the first 

reaction a 16S rRNA PCR amplification was performed using Archaeal specific 

primers 1AF and 1404AR (Table 2) [44].  These primers amplify a 1404 base pair 

fragment of Archaeal specific rRNA genes.  The PCR was done using a PCR 

Optimization Kit (Epicentre).   The amplification mixture consisted of 2 l template 

(which amounted to roughly 200 ng), 2.5 L of the 1AF primer and 1404AR primer 

(both diluted to 20 M), 2 l Tfl DNA polymerase (1 unit/l) (Epicentre), and 16 l 

sterile H2O.  This amplification mixture was duplicated 12 times.  To each mixture 

25 l of one of the small optimization kit pre-mixes was added giving a total volume 

of 50 l.  All 12 of the pre-mixes were used (A to L).  The reactions were run in a 

PTC-200 Thermal Cycler (MJ Research).  The reaction conditions were as follows: 

initial denaturation step for five minutes at 94C followed by touchdown protocol 

for 20 cycles at 71C to 61C with the annealing temperature reduced by 1C every 

two cycles, followed by 15 additional cycles at an annealing temperature of 61c.  

Denaturation and annealing steps were one minute long. All the extension steps  
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Table 2: Archaeal specific 16S rRNA primers used in this study [44]. 

Primer Sequence 
1AF 5’ MTCYGKTTGATCCYGSCGRAG 3’ 

1404AR 5’ CGGTGTGTGCAAGGRGC 3’ 
100AR 5’ TGGGTCTCGCTCGTTG 3’ 
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 were three minutes long with the exception of the final extension cycle, which was 

ten minutes long [44]. The PCR products were run on a 0.8% agarose gel to ensure 

the success of the PCR.  Amplified samples were purified using the UltraClean PCR 

CleanUp Kit from MoBio.  The samples were again quantified, the results ranging 

from 86-to 128 ng/l.   

The amplified samples from the first PCR were used as the template for the 

second PCR.  For the second PCR, 16S rDNA PCR amplification was performed using 

Archaeal specific primers 1AR and 1100AR (Table 1).  The primers amplify an 1100 

base pair fragment of Archaeal specific rRNA genes.  The second PCR also utilized 

the PCR Optimization Kit (Epicentre).  The amplification mixture consisted of 2 l 

template, 2.5 l of primer 1AF and 1100AR (both diluted to 20 M), 2 l Tfl DNA 

Polymerase (Epicentre), and 16 l reverse osmosis H2O.  This amplification mixture 

was replicated 12 times.  To each mixture 25 l of one of the Optimization kit pre-

mixes was added giving a total volume of 50 l.  All 12 of the pre-mixes were used 

(A to L).  The reactions were run in a PTC-200 Thermal Cycler (MJ Research).  The 

same reaction conditions from the first PCR apply to the second PCR.  The PCR 

products were quantified yielding results that ranged from 421 to 588 ng/L.  The 

amplified samples were again run on a 0.8% agarose gel to confirm the success of 

the PCR.   

Cloning 

The products from the second PCR were ligated into the pGEM-T Easy 

Vector (Promega).  The ligation mixture was as follows: 1 l PCR product, 1 l 

pGEM-T Easy Vector (50 ng/l), 1 l T4 DNA Ligase (3 units/l), 5 l 2X Ligation 
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Buffer, and 2 l reverse osmosis H2O to give a total reaction volume of 10 l.  The 

ligation mixture was then used to transform competent DH5 E. coli cells (New 

England Biolabs).  Transformants were plated on Luria broth (LB)-Amp plates 

(25g/ml of Amp) that contained Xgal (20 mg/ml) and IPTG (23.8 mg/ml), and 

blue/white colony screenings were performed.  

 White colonies growing on the LB-Amp, Xgal plates were used to make up 

overnight cultures.  Plasmid DNA was isolated from overnight cultures using an 

UltraClean 6 Minute Mini Prep Kit (MoBio).  Resulting samples were quantified 

yielding results that ranged from 50 to 500 ng/l. Stocks were also made using the 

overnights by adding 1.0ml of overnight to 0.5ml of a 50% glycerol solution. 

 Five hundred ng of the purified plasmid DNA products were digested using 

EcoR1 (20,000 units/ml) (New England BioLabs) restriction enzyme at 37C for 

one hour.   The digested samples were run on a 0.8% agarose gel to confirm size of 

insert.   

DNA Sequencing 

 Inserts from plasmid that contained inserts measuring 1100 base pairs were 

sequenced.  A total of 50 summer clones and 50 winter clones were sequenced.  The 

summer and winter clones were sent to SeqWright DNA Technology Services in 

Houston, Texas to be sequenced.  Although 100 total clones were sequenced, usable 

data for only 43 summer clones and 20 winter clones were obtained.  

 DNA inserts were sequenced from both ends, merged and edited using 

MacVector Software.  Edited sequences were then used in NCBI database BLAST 

searches to attempt to identify the organism.  Similarity matrices were constructed 



37 
 

to determine how the sequences related to each other and how they related to 

sequences identified by Maggie Grosser and those sequenced by Xuelian Chen.  

Similarity matrices were conducted using MacVector and Geneious Software.  A 

phylogenetic tree was constructed to determine also how these new sequences 

related to each other using MacVector Software. 
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Chapter III 

 
Results 

 
ANALYSIS OF INDIVIDUAL ARCHAEA 

Sequencing Analysis 

One hundred clones were isolated in total.  SeqWright Incorporated 

sequenced all 100 clones.  Seven of the summer clones and 30 of the winter clones 

could not be sequenced and were thrown out, leaving 63 total sequences.  Merged 

sequences were edited and aligned using MacVector (MacVector Inc, North Carolina, 

USA) and Geneious software (Biomatters Limited, New Zealand).  Edited and aligned 

DNA sequences were compared with known sequences in the NCBI database 

through BLAST searches.  The BLAST results for summer and winter clones are 

summarized in tables 3 and 4.  Clone sequences were matched to known organisms 

based on similarity index.  For alignment and BLAST searches gap penalties of 5 and 

2 were chosen based on previous studies [45, 46]. 

Based on the BLAST data, the summer and winter clones were split into eight 

different groups based on which organisms their sequences matched in the 

database, these data are listed in table 5. Twenty-two of the 63 sequences, 34%, 

belong to the genus Methanosaeta. Seventeen clones, 26.9%, belong to the genus 

Methanoregula. One clone, 1.6%, belonged to the Methanospirillum genus. Eighteen 

clones, 28.6%, belong to the genus Methanosphaerula. 
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Table 3: BLAST search results for the summer clones. Compares clones isolated to 
known organism sequences in the NCBI database. 
 

Clone BLAST Match 
 

 

Percent 
Identity 

Number of 
nucleotides 
matched 

Number 
of Gaps 

Accession 
number 

S1-2011 Methanosphaerula 
palustris 

93 849/917 0 NC 
011832.1 

S2-2011 Methanosphaerula 
palustris 

92 954/1038 2 NC 
011832.1 

S3-2011 Methanosaeta concilii 97 1012/1038 0 NC 
015416.1 

S4-2011 Methanosaeta concilii 98 1018/1044 0 NC 
015416.1 

S5-2011 Methanosaeta concilii 97 1013/1041 0 NC 
015416.1 

S6-2011 Methanosaeta concilii 97 964/992 0 NC 
015416.1 

S7-2011 Methanosphaerula 
palustris 

94 972/1037 0 NC 
011832.1 

S8-2011 Methanosphaerula 
palustris 

95 981/1036 0 NC 
011832.1 

S9-2011 Methanosphaerula 
palustris 

92 921/1001 2 NC 
011832.1 

S10-
2011 

Methanoregula 
boonei 

95 986/1039 2 NC 
009712.1 

S11-
2011 

Methanoregula 
boonei 

96 996/1038 0 NC 
009712.1 

S12-
2011 

Methanosphaerula 
palustris 

92 948/1033 2 NC 
011832.1 

S13-
2011 

Methanosphaerula 
palustris 

92 950/1035 2 NC 
011832.1 

S14-
2011 

Methanosphaerula 
palustris 

92 955/1038 1 NC 
011832.1 

S15-
2011 

Methanosphaerula 
palustris 

92 956/1039 1 NC 
011832.1 

S16-
2011 

Methanosaeta concilii 98 1018/1041 0 NC 
015416.1 

S17-
2011 

Methanosaeta concilii 98 1018/1041 0 NC 
015416.1 

S18-
2011 

Methanoregula 
boonei 

95 979/1038 0 NC 
009712.1 

S19-
2011 

Methanoregula 
boonei 

94 979/1038 0 NC 
009712.1 

S20-
2011 

Methanoregula 
boonei 

97 1003/1038 0 NC 
009712.1 

S21-
2011 

Methanoregula 
boonei 

95 983/1032 0 NC 
009712.1 

S22-
2011 

Methanoregula 
boonei 

95 983/1032 0 NC 
009712.1 

S23-
2011 

Methanosaeta concilii 98 1021/1039 0 NC 
015416.1 
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S24-
2011 

Methanosphaerula 
palustris 

92 954/1039 1 NC 
011832.1 

S26-
2011 

Methanosaeta concilii 98 814/832 3 NC 
015416.1 

S27-
2011 

Methanosphaerula 
palustris 

88 572/653 6 NC 
011832.1 

S28-
2011 

Methanosphaerula 
palustris 

91 829/906 7 NC 
011832.1 

S29-
2011 

Methanosaeta concilii 98 1023/1049 4 NC 
015416.1 

S31-
2011 

Methanosphaerula 
palustris 

92 883/962 4 NC 
011832.1 

S32-
2011 

Methanosphaerula 
palustris 

92 869/946 4 NC 
011832.1 

S33-
2011 

Methanocella 
paludicola 

92 845/919 7 NC 
013665.1 

S34-
2011 

Methanosphaerula 
palustris 

93 973/1047 4 NC 
011832.1 

S35-
2011 

Methanoregula 
boonei 

95 582/615 2 NC 
009712.1 

S36-
2011 

Methanoregula 
boonei 

94 875/931 3 NC 
009712.1 

S39-
2011 

Methanosphaerula 
palustris 

91 631/696 7 NC 
011832.1 

S40-
2011 

Methanosaeta concilii 90 828/924 6 NC 
015416.1 

S41-
2011 

Methanoregula 
boonei 

93 775/837 3 NC 
009712.1 

S42-
2011 

Methanosaeta concilii 95 553/580 1 NC 
015416.1 

S43-
2011 

Methanosaeta concilii 94 775/841 1 NC 
015416.1 

S44-
2011 

Methanoregula 
boonei 

94 896/956 4 NC 
009712.1 

S45-
2011 

Methanosphaerula 
palustris 

91 738/815 3 NC 
011832.1 

S47-
2011 

Uncultured 
methanogenic 
archaeon RC-I 

95 856/917 2 NC 
009464.1 

S49-
2011 

Methanoregula 
boonei 

95 937/1028 5 NC 
009712.1 
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Table 4: BLAST search results for winter clones. Compares the winter clone 
sequences with known organism sequences in NCBI database. 
 
Clone BLAST Match Percent 

Identity 
Number of 
nucleotides 
matched 

Number 
of Gaps 

Accession 
number 

W8-2012 Methanosaeta concilii 89 645/727 8 NC 
015416.1 

W10-2012 Methanosaeta concilii 95 1000/1050 3 NC 
015416.1 

W12-2012 Methanoregula boonei 94 519/552 2 NC 
009712.1 

W15-2012 Methanoregula boonei 93 895/964 6 NC 
009712.1 

W22-2012 Methanosaeta 
harundinacea 

84 697/825 8 NC 
017527.1 

W24-2012 Methanosaeta concilii 97 1020/1047 0 NC 
015416.1 

W25-2012 Methanosaeta concilii 95 998/1046 3 NC 
015416.1 

W28-2012 Methanoregula boonei 94 766/818 4 NC 
009712.1 

W29-2012 Methanosaeta concilii 94 900/956 4 NC 
015416.1 

W31-2012 Methanosaeta concilii 94 876/935 6 NC 
015416.1 

W32-2012 Methanosaeta concilii 97 1019/1050 3 NC 
015416.1 

W34-2012 Methanocaldococcus 
vulcanis  

78 543/700 6 NC 
013407.1 

W35-2012 Methanoregula boonei 90 889/983 8 NC 
009712.1 

W36-2012 Methanosaeta concilii 94 839/888 4 NC 
015416.1 

W37-2012 Methanohalophilus 
mahii 

86 818/952 5 NC 
014002.1 

W38-2012 Methanosphaerula 
palustris 

92 733/800 6 NC 
011832.1 

W40-2012 Uncultured 
methanogenic 
archaeon RC-I 

94 755/805 5 NC 
009464.1 

W41-2012 Methanospirillum 
hungatei 

95 740/781 0 NC 
007796.1 

W44-2012 Methanoregula boonei 94 869/923 6 NC 
009712.1 

W50-2012 Methanosaeta concilii 94 850/904 6 NC 
015416.1 
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Table 5: Grouping of clones and most closely matched organisms based on genus. 

 

Group Genus matched Number of clones matched 
1 Methanoregula 17 
2 Methanospirillum 1 
3 Methanosphaerula 18 
4 Methanosaeta 22 
5 Uncultured methanogenic 

archaeon RC-1 
2 

6 Methanocella 1 
7 Methanohalophilus 1 
8 Methanocaldococcus 1 

 

 
 

 

 

 

 

 

One clone was closely related to the genus Methanohalophilus with 86% identity. 

The closest match for one clone was the genus Methanocaldococcus but with only 
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78% identity. One clone belonged to the genus Methanocella. The final two clones 

shared 94% and 95% identity with uncultured methanogenic archaeon RC-I. 

Sequence percent identities ranged from 78 to 98. For two sequences to be 

considered the same species, they should have a percent identity that is greater than 

or equal to 98.7 [47]. There were 6 that were close, having a percent identity of 98. 

For sequences to be assigned to the same genera, they must have a sequence 

percent identity of 87 or higher [47]. Sixty of the clones had sequence percent 

identities high enough, 87% or greater, to match them with known genera. Three of 

the clones had sequence similarity indices of less than 87 and could represent novel 

genera. 

Sequence Similarities Between Current and Previous Findings 

 Similarity matrices were set up to compare the sequences against each other 

to determine how similar the clone sequences were. Summer and winter clones 

were compared first. Table 6 is a summary of the similarity matrix for each summer 

and winter clone.  Sequences compared with itself had a percent identity of 100%.  

There was a total of 31 clones that had a percent identity of 87% or greater and 

there were only 6 clones that had a percent identity of 98.7% or greater.  

Clones that belong with the genus Methanosaeta were compared to clones 

sequenced by Margaret Grosser in 2007 and Xuelian Chen in 2011, primarily 

because both showed Methanosaeta concilii-like organisms were the most abundant.  
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Table 6: Sequence similarity matrix summary for summer and winter clones. The 
full table is in the Appendix (table A1). 
 

 Number of clones similar/total clones 

Clone sequences that had percent 
identities of 87% or greater to other 

summer and winter clones 
 

31/63 

Clone sequences that had percent 
identities of 98.7% or greater to other 

summer and winter clones 

6/63 
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Table 7 is the summary for the similarity matrix that compares clones that most 

closely related Methanosaeta concilii and the clones isolated by Grosser were 

Methanosaeta concilii-like. In total, 9 of the 22 summer and winter clones that 

belong to the genus Methanosaeta showed 87% similarity with the Grosser clones 

and zero showed similarity of 98.7%.  

 Most of the clones sequenced by Chen in 2011 belonged to the genus 

Methanosaeta. All of Chen’s clones were compared to summer and winter clones 

that most closely matched Methanosaeta from this study. Table 8 is a summary of 

the similarity matrix that compared summer and winter clones that closely matched 

Methanosaeta concilii and clones sequenced by Chen that also closely matched 

Methanosaeta concilii. Thirteen of the 22 summer and winter clones compared to 

Chens clones showed a similarity of 87% while zero showed similarity of 98.7%.  

The clones sequenced by Grosser matched more organisms than just 

Methanosaeta concilii. Clones that matched organisms other than M. concilii were 

compared with the different clone groups that were isolated during summer and 

winter pools. When Grosser’s study was done, Methanoregula boonei was not in the 

NCBI database, but some of her clones closely matched Methanospirillum species. 

Summer and winter clones that matched the Methanoregula genus also has a high 

percent identity to Methanospirillum and Methanosphaerula genera, but it was less 

than 87%. The clones that Grosser sequenced that most closely matched 

Methanospirillum species were then compared to clones in groups 1-3. The 

summary for these comparisons is listed in table 9.  
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Table 7: Sequence similarity matrix summary for summer and winter clones that 
closely matched Methanosaeta concilii and compared with clones isolated by 
Margaret Grosser that also closely matched Methanosaeta concilii. The full table is 
located in the Appendix (table A2). 
 

 Number of similarities 

Summer and winter clone sequences 
with a similarity index of 87 or greater 

when compared to Grosser’s clone 
sequences 

 

9 

Summer and winter clone sequences 
with a similarity index of 98.7 or 

greater when compared to Grosser’s 
clone sequences 

0 
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Table 8: Sequence similarity matrix summary for summer and winter clones that 
closely matched Methanosaeta concilii and compared with clones isolated by Xuelian 
Chen that also closely matched Methanosaeta concilii. The full table is located in the 
Appendix (table A3). 
 

 Number of Sequence Combinations 

Summer and winter clone sequences 
with a similarity index of 87 or greater 

when compared to Chens’s clone 
sequences 

 

13 

Summer and winter clone sequences 
with a similarity index of 98.7 or 

greater when compared to Chens’s 
clone sequences 

 

0 
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Out of the 36 summer and winter clones that groups 1-3 were comprised of, only 17 

showed sequence similarity of 87% to clones from Grossers study that belong to the 

genus Methanospirillum and zero clones had a similarity of 98.7% to the Grosser 

clones.   

Summer and winter clones that had percent identity of 87% or more with 

uncultured methanogenic archaeon or the genus Methanocella were compared with 

clones sequenced by Grosser that matched uncultured methanogenic archaeon. 

Table 10 shows the comparison results for these sequences. Of the 3 summer and 

winter clones that were compared to clones isolated by Grosser, zero had a 

similarity index of 87% or more.  

 The last comparison was between summer and winter clones that had a 

percent identity of 87% with the genus Methanohalophilus and Grosser’s clones that 

belonged to the same genus. Table 11 lists the results of this comparison. There 

were only 2 clones from the current study that were part of this comparison and 

neither of them showed enough similarity with Grossers clones to be considered the 

same organisms.  
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Table 9: Sequence similarity matrix summary for group 1 clones compared with 
clones isolated by Margaret Grosser that closely matched Methanospirillum. The full 
table is in the Appendix (table A4). 
 

 Number of clones similar 

Group 1 clone sequences with a 
similarity index greater than 87 when 

compared to Grossers’s clone 
sequences 

 

17 

Group 1 clone sequences with a 
similarity index greater than 98.7 when 

compared to Grossers’s clone 
sequences 

 

0 
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Table 10: Comparison of summer and winter clones that closely matched 
Unculutured methanogenic archaeon with Grosser’s clones that also closely 
matched uncultured methanogenic archaeon. Italicized numbers indicate a 
similarity index of 87 or greater; bolded numbers indicate sequences with a 
similarity index of 98.7 or greater. 
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Table 11: Comparison of winter clones and Grosser’s clones that most closely 
matched Methanohalophilus. Italicized numbers indicate a similarity index of 87 or 
greater; bolded numbers indicate sequences with a similarity index of 98.7 or 
greater. 
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Phylogenetic Analysis 

 A phylogenetic tree was constructed to determine the phylogenetic 

relationship between summer and winter clones. The tree was constructed using 

MacVector software. Figure 5 shows the complete phylogenetic tree. There were 

three large clusters shown on the tree. The first cluster, A, are most closely related 

Methanosaeta concilii in the NCBI BLAST searches. This cluster also contained the 

clones that most closely matched the uncultured methanogenic archaeon. Cluster B 

were most closely related to Methanosphaerula palustris. Cluster C were closely 

related Methanoregula boonei and Methanosphaerula palustris. There were also 

clones in this cluster that were similar to Methanosaeta concilii and one clone in this 

cluster was similar to an uncultured methanogenic archaeon as determined by the 

BLAST searches. There were also a few small clusters, which mainly consisted of 

pairs of clones that were closely related. The first small cluster pair, D, was S19 and 

S18, which was most closely related to Methanoregula boonei. The second cluster 

pair, E, consisted of S7 and S8 and these sequences were most closely related to 

Methanosphaerula palustris. The third small cluster, F, consisted of S10, S11 and S21 

and this cluster was most closely related to Methanoregula boonei. The fourth small 

cluster pair, G, consisted of W15 and S41, which were most closely related to 

Methanoregula boonei. 
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Figure 5: Phylogenetic tree for summer and winter clones. Three large clusters and 
four small clusters were observed. Clones that most closely related the same or 
similar Archaea in the NCBI database tended to cluster together. Methanobacterium 
curvum, Methanospirillum sp., Methanosarcina lacustris, Methanosarcina barkeri, 
Methanosaeta concilii and Methanosarcina mazei sequences were used to root the 
tree.  
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Chapter IV 

Discussion 

Soil is considered to be the most microbially diverse environment on earth 

and until recently, Bacteria were the only prokaryotes that had been studied in soil 

environments. It has become evident that Archaea are also abundant and ubiquitous 

in soil [48].  This study examined the Archaeal community in sediments of a 

reservoir littoral zone compared to what was there seven years earlier. There were 

nine genus or species that 16S rDNA sequences matched in the NCBI database total. 

Over half of the summer samples, 67%, closely matched group one, which included 

Methanoregula boonei and Methanosphaerula palustris. Twenty eight percent closely 

matched group 2, which included Methanosaeta concilii, Methanosaeta thermophila, 

and Methanosaeta harundinacea. For the winter samples 35% of the clones closely 

matched the group one organisms. Fifty percent of the clones closely matched the 

group two organisms. Overall 57% of the clones isolated closely matched the group 

one organisms and 35% closely matched the group two organisms. In 2007 it was 

found that 37 of 57, or 65%, summer clones closely matched Methanosaeta sp. and 

three of 77, or 5%, clones matched Methanospirillum species. For winter, Grosser 

found that 38 of 77, or 49%, clones matched Methanosaeta sp. and ten of 77, or 13%, 

clones matched Methanospirillum sp [42]. Overall 56% of Grosser’s clones closely 

matched Methanosaeta sp. and ten percent closely matched Methanospirillum sp. 

Currently, instead of only one class of methanogens being dominant in the sediment 
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of the Ledbetter Creek embayment, there are two. Methanoregula boonei and 

Methanosphaerula palustris both belong to the Methanomicobia class and the 

Methanomicrobiales order of Euryarchaeota.  Both are recently described species, 

Methanoregula boonei was described in 2008 and Methanosphaerula palustris was 

described in 2009. Members belonging to this order of Euryarchaeota are capable of 

producing methane from formate and some secondary alcohols. The Methanosaeta 

sp. belongs to the Methanosarcinales order and Methanosaetace family. These 

organisms are obligate acetotrophic methanogens. For these organisms, acetate is 

the sole substrate used in methanogenesis [29]. 

There were less dominant organisms found that were not included in groups 

one and two. One winter clone closely matched Methanohalophilus mahii, which 

belongs to the family Methanosarcinaceae. These organisms are acetotrophic 

methanogens and are the most versatile methanogens, having the ability to utilize 

acetate, H2+CO2 and methyl compounds in methanogenesis [29]. One winter clone 

closely matched Methanocaldococcus vulcanis, which belongs to the family 

Methanocaldococcaceae. These organisms utilize H2+CO2 and methyl compounds for 

methanogenesis [29]. 

In comparing the data found in summer and winter, it is apparent that there 

was a shift in the abundance of methanogenic orders found.  During the summer 

months, the Methanomicrobiales order is the most dominant with 67% of the clones 

sequenced matching organisms from this order. Only 28% of the summer clones 

sequenced matched the Methanosaeta sp. During the winter the Methanosaeta sp. 

are the more dominant with 50% of sequenced clones matching these species. Only 
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35% of the winter clones sequenced matched the Methanomicrobiales order. There 

are two factors that could be responsible for the difference in abundance of 

organisms between summer and winter. One is the availability of substrates for 

methanogenesis. The restriction of substrates available can limit the abundance of 

methanogens found in the littoral zone sediment. Many of the organisms matched 

can utilize H2+CO2 and formate, which could lead to competition between 

organisms. Competition could limit the abundance of these organisms.  Both the 

Methanosaeta sp. and Methanohalopjilus mahii can utilize acetate. Methanosaeta sp. 

use acetyl coA synthetase in methanogenesis which can be activated in low 

concentration of acetate, where the Methanosarcinaceae family use acetate kinase, 

which required higher concentrations of acetate before it can be activated [38].  

The second factor, which plays into the first, is temperature. When the 

temperature decreases there is an increase in the amount of acetate, propionate, 

caproate, lactate and isoporponal in an environment [40]. This affects the substrates 

that are available for methanogenesis [39]. There is an increase in the amount of 

Methanosaeta sp. present between summer and winter, winter having the higher 

amount. This could be due to the increase in acetate available in the environment. 

There is a higher amount of species belonging to the Methanomicrobiales order in 

the summer, which could be due to the limited amount of acetate available as well as 

a higher number of other substrates available. 

When current data was compared with Grosser’s data, it is apparent that 

there is also a shift in the abundance of genus and species of methanogens found in 

the littoral zone sediment. There are many conditions that could be responsible for 
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the shift in organisms over time which includes, but is not limited to, pH, particle 

size, organic carbon content, nutrient availability, water content, and oxygen 

concentration [48]. The number of organisms found that belong to the 

Methanomicrobiales order is higher than it was seven years ago. Grosser found that 

only ten percent of her clones matched Methanospirillum sp., which also belong to 

the Methanomicrobiales order. One factor that could be responsible for this increase 

is an increase in substrates utilized by these organisms for methanogenesis. Another 

possibility to consider is that Grosser had more clones that matched unknown 

organism. Methanoregula boonei and Methanosphaerula palustris were not 

described until after Grosser’s thesis was written. Grosser’s unknowns could 

possibly have been these species. There has also been a decline in the number of 

Methanosaeta sp., which could be due to a limited number of substrates present in 

the environment. 

The phylogenetic tree (Fig. 5) was constructed to look at the relationships 

between the clones of summer and winter samples. The two clones that matched the 

uncultured methanogenic archeaon RC-I were present in two different clusters. 

W40-2012 was in cluster C, which consisted of clones that closely matched the 

Methanomicobia class and the Methanomicrobiales order of Euryarchaeota, which 

includes Methanoregula boonei and Methanosphaerula palustris, and S47-2011 was 

located in cluster A, which contained clones that matched Methanosaeta concilii.  

Similarity matrices were also constructed to look at relationships between 

summer and winter clones as well as to determine relationships between clones 

sequenced by Maggie Grosser and Xuelian Chen (tables 7-11). For sequences to be 
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considered the same species they need to be have a similarity index of at least 

98.7%. It was previously accepted that an index of 97% was sufficient to determine 

when two sequences were the same species, but in 2006 it was determined that 

97% was too low and that by using 97% as the cutoff there would be an increase in 

error [49].  For organisms to be considered part of the same genera there needs to 

be a similarity index of 87% or higher. Different similarity matrices were 

constructed to compare summer and winter clones from this study to each other as 

well as to compare summer and winter clones with clones sequenced by Grosser 

and Chen.  When summer and winter clones were compared (table 6), there were 

incidences where clone sequences had similarity index of 87 or greater. Few of the 

clones isolated in this study showed a similarity index of 87% with clones 

sequenced by Grosser and Chen and none of the current clones were similar enough 

to be considered the same species. This indicates that the organisms present in the 

littoral zone sediment currently are different from those that were present seven 

years ago. Over the past seven years, the environment at the Ledbetter Creek 

Embayment has altered in a manner that resulted in two classes of Archaea 

becoming dominant, whereas previously, only one of the two classes were 

dominant. Methanomicobia has joined Methanosaetace as the dominant classes of 

Archaea. Since the 2007 study by Maggie Grosser, Methanoregula boonei and 

Methanosphaerula palustris have been described. Copelans et al. discovered 

Methanoregula boonei in 2007, and Lucas et al. discovered Methanosphaerula 

palustris in 2008 [50]. Both Archaeal species belong to the Methanomicobia class 

and are the two-dominant species from this class in the littoral zone sediment. In 
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2007, Grosser sequences 29 unidentified archaeal strains and there is a possibility 

that some are Methanoregula boonei or Methanosphaerula palustris, but the 

prospect that the species would show dominance in the study as it does in the 

current study is unlikely. Methanogen-producing bacteria are studied in only a 

handful of areas throughout the world because they are incredibly difficult to 

culture in a laboratory setting.  More studies will need to be done on the effects of 

methanogens on flora and fauna, as well as specific niches for the bacteria itself 

before further analysis of these results can be completed.  Future studies can look at 

the long-term dominance patterns of Methanosaeta concilii-like, Methanoregula 

boonei-like and Methanosphaerula palustris-like organisms in the Ledbetter Creek 

Embayment along with environmental characteristics.  These results could be 

compared to similar studies done in other areas containing the same class of 

archaea.   
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Chapter V 
 

Appendix 
 

Sequences 
 
S1-2011 
CCGGGAAACTGGGGATAATACTCCATGGGCTACGGAAGCTGGAAGGCTCTGTAACCCAA
AGTTCCGGCGCCCTAGGATGGGTCTGCGGCCGATTAGGTTGTTGTTGGGGTAACGGCCCA
ACAAGCCGATCATCGGTACGGGTTGTGGGAGCAAGAGCCCGGAGATGGATTCTGAGACA
TGAATCCAGGCCCTACGGGGCGCAGCGGGCGCGAAAACTTTACAATGCGGGAAACCGTGA
TAAGGGGACCCCGAGTGCCTGTACACGCAGGCCGTTCAGGTGTTTAAAACGCATCTGGAG
AAAGGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGTAATACCGGCGGCTCGAGTGGTGGC
CACTATTACTGGGCTTAAAGCGTTCGTAGCTGGTTTGTTAAGTCCCTGGGGAAATCTGCC
GGCTTAACCGGCAGGCGTTTCAGGGATACTGGCAGACTAGGGATCGGGGGAGGTGAGAG
GTACTCTAGGGGTAGGAGTGAAATCCTGTAATCCTTGGGGGACCACCTGTGGCGAAGGCG
TCTCACCAGAACGACTCCGACGGTGAGGGACGAAAGCTGGGGGAGCAAACCGGATTAGA
TACCCGGGTAGTCCCAGCTGTAAACGATGCGCGTTAGGTGTATCGGTGACTACGAGTTAC
CGAGGTGCCGAAGGGAAACCGTGAAACGTGCCGCCTGGGAAGTACGGTCGCAAGGCTGA
AACTTAAAGGAATTGGCGGGGGAGCACCACAACGGGTGGAGCCTGCGGTTTAATTGGAC
TCAACGCCGGGAAGCTCACCGGGTAAGACAGCGGAGTGATAGCCAGGCTGAAGACTTTGC
TTGACCAGCTGAGAGGAGGTGCATGGCCGTCGTCAGTCCGTACTGTGAAGCATCCTGTTA
AGTCAGGCAACGAGCGAGACCCAA 
 
S2-2011 
GATCCTGGCGGAGGTCACTGCTATCGGGGTTCGACTAAGCCATGCAAGTCGAGAGGGGTC
AAGCCCTCGGCGAACTGCTCAGTAACACGTGGATAACCTGACCTAGGGTGGAGGATAACC
CCGGGAAACTGGGGATAATACTCCATGGGCTACGGAAGCTGGAAGGCTCTGTAACCCAA
AGTTCCGGCGCCCTAGGATGGGTCTGCGGCCGATTAGGTTGTTGTTGGGGTAACGGCCCA
ACAAGCCGATCATCGGTACGGGTTGTGGGAGCAAGAGCCCGGAGATGGATTCTGAGACA
TGAATCCAGGCCCTACGGGGCGCAGCGGGCGCGAAAACTTTACAATGCGGGAAACCGTGA
TAAGGGGACCCCGAGTGCCTGTACACGCAGGCCGTTCAGGTGTTTAAAACGCATCTGGAG
AAAGGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGTAATACCGGCGGCTCGAGTGGTGGC
CACTATTACTGGGCTTAAAGCGTTCGTAGCTGGTTTGTTAAGTCCCTGGGGAAATCTGCC
GGCTTAACCGGCAGGCGTTTCAGGGATACTGGCAGACTAGGGATCGGGGGAGGTGAGAG
GTACTCTAGGGGTAGGAGTGAAATCCTGTAATCCTTGGGGGACCACCTGTGGCGAAGGCG
TCTCACCAGAACGACTCCGACGGTGAGGGACGAAAGCTGGGGGAGCAAACCGGATTAGA
TACCCGGGTAGTCCCAGCTGTAAACGATGCGCGTTAGGTGTATCGGTGACTACGAGTTAC
CGAGGTGCCGAAGGGAAACCCGTGAAACGTGCCGCCTGGGAAGTACGGTCGCAAGGCTGA
AACTTAAAGGAATTGGCGGGGGAGCACCACAACGGGTGGAGCCTGCGGTTTAATTGGAC
TCAACGCCGGGAAGCTCACCGGGTAAGACAGCGGAGTGATAGCCAGGCTGAAGACTTTGC
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TTGACCAGCTGAGAGGAGGTGCATGGCCGTCGTCAGTCCGTACTGTGAAGCATCCTGTTA
AGTCAGGCAACGAGCGAGACCCA 
 
S3-2011 
ATCCTGGCAGAGGTCACTGTTATCGAGGTTCGACTAAGCCATGCGAGTCGAATGTAGCAA
TACATGGCGTACTGCTCAGTAACACGTGGATAACCTACCCTTGAGACGGGGATAAACCCG
GGAAACTGGGTATAATACCCGATAGATCTCGACTGCTGGAATGCATCGGGGTTTAAAGC
TCCGGCGCTCAAGGATGGATCTGCGGCCTATCAGGTAGTAGTGGGTGTAGCGTACCTACT
AGCCTACGACGGGTACGGGTTGTGAGAGCAAGAGCCCGGAGATGGATTCTGAGACACGA
ATCCAGGCCCTACGGGGTGCAGCAGGCGCGAAAACTTTACAATGCTGGCAACAGCGATAA
GGGGACCTCGAGTGTCAGGTTACAAATCTGGCTGTCGTGATGCCTAAAAAGCATTGCATA
GCAAGGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGTAACACCGGCGGCTCGAGTGGTAA
CCGTTATTATTGGGTCTAAAGGGTCTGTAGCCGGCCGGATAAGTCTCTTGGGAAATCTGG
CAGCTTAACTGTCAGGCTTTCAGGAGATACTGTCTGGCTCGAGGCCGGGAGAGGTGAGAG
GTACTTCAGGGGTAGGGGTGAAATCTTGTAATCCTTGAAGGACCACCAGTGGCGAAGGC
GTCTCACCAGAACGGACCTGACGGCAAGGGACGAAAGCCAGGGGCACGAACCGGATTAG
ATACCCGGGTAGTCCTAGCCGTAAACGATACTCGCTAGGTGTCGGCCACGGTGCGACCGT
TGTCGGTGCCGTAGGGAAGCCGTGGAGTGAGCCACCTGGGAAGTACGGCCGCAAGGCTGA
AACTTAAAGGAATCGGCGGGGGAGCACCACAACGGGTGGAGCTTGCGGTTTAATTGGGT
TCAACGCCGGAAATCTTACCGGGACCGACAGCAATATGAAGGCCAGGCTGAAGACTTTGC
CGGATTAGCTGAGAGGTGGTGCATGGCCGTCGTCAGTTCGTACTGTGAGGCATCCTGTTA
AGTCAGGCAACGAGCGAGACCCA 
 
S4-2011 
TGGTTGATCCTGGCAGAGGTCACTGTTATCGAGGTTCGACTAAGCCATGCGAGTCGAATG
TAGCAATACATGGCGTACTGCTCAGTAACACGTGGATAACCTACCCTTGAGACGGGGATA
AACCCGGGAAACTGGGTATAATACCCGATAGATCTCGACTGCTGGAATGCATCGGGGTTT
AAAGCTCCGGCGCTCAAGGATGGATCTGCGGCCTATCAGGTAGTAGTGGGTGTAGCGTAC
CTACTAGCCTACGACGGGTACGGGTTGTGAGAGCAAGAGCCCGGAGATGGATTCTGAGA
CACGAATCCAGGCCCTACGGGGTGCAGCAGGCGCGAAAACTTTACAATGCTGGCAACAGC
GATAAGGGGACCTCGAGTGTCAGGTTACAAATCTGGCTGTCGTGATGCCTAAAAAGCAT
TGCATAGCAAGGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGTAACACCGGCGGCTCGAG
TGGTAACCGTTATTATTGGGTCTAAAGGGTCTGTAGCCGGCCGGATAAGTCTCTTGGGA
AATCTGGCAGCTTAACTGTCAGGCTTTCAGGAGATACTGTCTGGCTCGAGGCCGGGAGAG
GTGAGAGGTACTTCAGGGGTAGGGGTGAAATCTTGTAATCCTTGAAGGACCACCAGTGG
CGAAGGCGTCTCACCAGAACGGACCTGACGGCAAGGGACGAAAGCCAGGGGCACGAACCG
GATTAGATACCCGGGTAGTCCTAGCCGTAAACGATACTCGCTAGGTGTCGGCCACGGTGC
GACCGTTGTCGGTGCCGTAGGGAAGCCGTGGAGTGAGCCACCTGGGAAGTACGGCCGCAA
GGCTGAAACTTAAAGGAATCGGCGGGGGAGCACCACAACGGGTGGAGCTTGCGGTTTAA
TTGGGTTCAACGCCGGAAATCTTACCGGGACCGACAGCAATATGAAGGCCAGGCTGAAG
ACTTTGCCGGATTAGCTGAGAGGTGGTGCATGGCCGTCGTCAGTTCGTACTGTGAGGCAT
CCTGTTAAGTCAGGCAACGAGCGAGACCCA 
 
S5-2011 
TCTGGTTGATCCTGGCGGAGGTTACTGCTATCGAGGTTCGACTAAGCCATGCGAGTCGAA
TGTAGCAATACATGGCGTACTGCTCAGTAACACGTGGACAACCTACCCTTAGGACGGGGA
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TAAACCCGGGAAACTGGGTATAATACCCGATAGTCCTCGGCCGCTGGAATGCCCCGAGGA
CCAAAGCTCCGGCGCCTAAGGATGGGTCTGCGGCCTATCAGGTAGTAGTGGGTGTAGCGT
ACCTACTAGCCTACGACGGGTACGGGTTGTGAGAGCAAGAGCCCGGAGATGGATTCTGA
GACACGAATCCAGGCCCTACGGGGTGCAGCAGGCGCGAAAACTTTACAATGCCGGCAACG
GCGATAAGGGGACCTCGAGTGCCAGGTTACAAATCTGGCTGTCGTGATGCCTAAAAAGC
ATTGCATAGCAAGGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGTAACACCGGCGGCTCG
AGTGGTAACCGTTATTATTGGGTCTAAAGGGTCTGTAGCCGGCCGGATAAGTCTCTTGGG
AAATCTGGCAGCTTAACTGTCAGGCTTTCAGGAGATACTGTCTGGCTCGAGGCCGGGAGA
GGTGAGAGGTACTTCAGGGGTAGGGGTGAAATCTTGTAATCCTTGAAGGACCACCAGTG
GCGAAGGCGTCTCACCAGAACGGACCTGACGGCAAGGGGCGAAAGCTAGGGGCACGAACC
GGATTAGATACCCGGGTAGTCCTAGCCGTAAACGATACTCGCTAGGTGTCGGCCACGGTG
CGACCGTGGTCGGTGCCGTAGGGAAGCCGTGAAGCGAGCCACCTGGGAAGTACGGCCGCA
AGGCTGAAACTTAAAGGAATTGGCGGGGGAGCACTACAACGGGTGGAGCTCGCGGTTTA
ATTGGATTCAACGCCGGAAATCTCACCGGGACCGACAGCAATATGAAGGCCAGGCTGAAG
ACCTTGCCGGATTAGCTGAGAGGAGGTGCATGGCCGTCGTCAGTTCGTACTGTGAAGCAT
CCTGTTAAGTCAGGCAACGAGCGAG 
 
S6-2011 
CTGGTTGATCCTGGCGGAGGTTACTGCTATCGAGGTTCGACTAAGCCATGCGAGTCGAAT
GTAGCAATACATGGCGTACTGCTCAGTAACACGTGGACAACCTACCCTTAGGACGGGGAT
AAACCCGGGAAACTGGGTATAATACCCGATAGTCCTCGGCCGCTGGAATGCCCCGAGGAC
CAAAGCTCCGGCGCCTAAGGATGGGTCTGCGGCCTATCAGGTAGTAGTGGGTGTAGCGTA
CCTACTAGCCTACGACGGGTACGGGTTGTGAGAGCAAGAGCCCGGAGATGGATTCTGAG
ACACGAATCCAGGCCCTACGGGGTGCAGCAGGCGCGAAAACTTTACAATGCCGGCAACGG
CGATAAGGGGACCTCGAGTGCCAGGTTACAAATCTGGCTGTCGTGATGCCTAAAAAGCAT
TGCATAGCAAGGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGTAACACCGGCGGCTCGAG
TGGTAACCGTTATTATTGGGTCTAAAGGGTCTGTAGCCGGCCGGATAAGTCTCTTGGGA
AATCTGGCAGCTTAACTGTCAGGCTTTCAGGAGATACTGTCTGGCTCGAGGCCGGGAGAG
GTGAGAGGTACTTCAGGGGTAGGGGTGAAATCTTGTAATCCTTGAAGGACCACCAGTGG
CGAAGGCGTCTCACCAGAACGGACCTGACGGCAAGGGGCGAAAGCTAGGGGCACGAACCG
GATTAGATACCCGGGTAGTCCTAGCCGTAAACGATACTCGCTAGGTGTCGGCCACGGTGC
GACCGTGGTCGGTGCCGTAGGGAAGCCGTGAAGCGAGCCACCTGGGAAGTACGGCCGCAA
GGCTGAAACTTAAAGGAATTGGCGGGGGAGCACTACAACGGGTGGAGCTCGCGGTTTAA
TTGGATTCAACGCCGGAAATCTCACCGGGACCGACAGCAATATGAAGGCCAGGCTGAAGA
CCTTGCCGGATTAGCTGAGAGGAGGTGCATGGCCGT 
 
S7-2011 
TGATCCTGGCGGAGGCCACTGCTATCGGGGTTCGATTAAGCCATGCGAGTCGAGAGGTGA
AAGACCTCGGCATACTGCTCAGTAACACGTGGACAATCTACCCTGAGGAGGGGGATAACC
CCGGAAAACTGGGGATAATACCCCATAGACCAGAGACGCTGGAATGCCCTCTGGTTGAAA
GGTCCGCCGCCTCAGGATGAGTCTGCGGCCGATTAGGTTGTTGTTGGGGTAACGGCCCAA
CAAGCCTGTAATCGGTACGGGTTGTGGGAGCAAGAACCCGGAGATGGATTCTGAGACAC
GAATCCAGGCCCTACGGGGCGCAGCAGGCGCGAAAACTTTACAATGCGGGAAACCGTGAT
AAGGGAACCCCGAGTGCCCGTAAATTCGGGCTGTCCGCCAGTGTAAAAAACTGGTGAAG
AAAGGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGTAATACCGGCGGCTCGAGTGGTGGC
CACTATTACTGGGCTTAAAGCGTCCGTAGCTGGATTGTTAAGTCTCCTGGGAAATCTGTC
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GGCTTAACCGACTGGCGTTCAGGGGATACTGGCAATCTAGGGACCGGGAGAGGTGAGAG
GTACTCCAGGGGTAGGAGTGAAATCCTGTAATCCTTGGGGGACCACCTGTGGCGAAGGCG
TCTCACCAGAACGGCTCCGACAGTGAGGGACGAAAGCTGGGGGAGCAAACCGGATTAGA
TACCCGGGTAGTCCCAGCTGTAAACGATGCGCGTTAGGTGTATCGGTGACCACGAGTCAC
CGAGGTGCCGAAGGGAAACCGTGAAACGTGCCGCCTGGGAAGTACGGTCGCAAGGCTGA
AACTTAAAGGAATTGGCGGGGGAGCACCACAACGGGTGGAGCCTGCGGTTTAATCGGAC
TCAACGCCGGGAAGCTCACCAGATAAGACAGCGGAATGATAGCCGGGCNGAAGANNNNG
CTTGACTAGCTGAGAGGAGGTGCATGGCCGTCGTCAGTTCGTACTGTGAAGCATCCTGN
NNNNNCAGGCAACGAGCGAGACCCA 
 
S8-2011 
GATCCTGGCGGAGGCCACTGCTATCGGGGTTCGATTAAGCCATGCGAGTCGAGAGGTGAA
AGACCTCGGCATACTGCTCAGTAACACGTGGACAATCTACCCTGAGGAGGGGGATAACCC
CGGAAAACTGGGGATAATACCCCATAGACCAGAGACGCTGGAATGCCCTCTGGTTGAAA
GGTCCGCCGCCTCAGGATGAGTCTGCGGCCGATTAGGTTGTTGTTGGGGTAACGGCCCAA
CAAGCCTGTAATCGGTACGGGTTGTGGGAGCAAGAACCCGGAGATGGATTCTGAGACAC
GAATCCAGGCCCTACGGGGCGCAGCAGGCGCGAAAACTTTACAATGCGGGAAACCGTGAT
AAGGGAACCCCGAGTGCCCGTAAATTCGGGCTGTCCGCCAGTGTAAAAAACTGGTGAAG
AAAGGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGTAATACCGGCGGCTCGAGTGGTGGC
CACTATTACTGGGCTTAAAGCGTCCGTAGCTGGATTGTTAAGTCTCCTGGGAAATCTGTC
GGCTTAACCGACTGGCGTTCAGGGGATACTGGCAATCTAGGGACCGGGAGAGGTGAGAG
GTACTCCAGGGGTAGGAGTGAAATCCTGTAATCCTTGGGGGACCACCTGTGGCGAAGGCG
TCTCACCAGAACGGCTCCGACAGTGAGGGACGAAAGCTGGGGGAGCAAACCGGATTAGA
TACCCGGGTAGTCCCAGCTGTAAACGATGCGCGTTAGGTGTATCGGTGACCACGAGTCAC
CGAGGTGCCGAAGGGAAACCGTGAAACGTGCCGCCTGGGAAGTACGGTCGCAAGGCTGA
AACTTAAAGGAATTGGCGGGGGAGCACCACAACGGGTGGAGCCTGCGGTTTAATCGGAC
TCAACGCCGGGAAGCTCACCAGATAAGACAGCGGAATGATAGCCGGGCTGAAGACTCTGC
TTGACTAGCTGAGAGGAGGTGCATGGCCGTCGTCAGTTCGTACTGTGAAGCATCCTGTTA
AGTCAGGCAACGAGCGAGACCCA 
 
S9-2011 
AGCCATGCAAGTCGAGAGGGGTCAAGCCCTCGGCGAACTGCTCAGTAACACGTGGATAAC
CTGACCTAGGGTGGAGGATAACCCCGGGAAACTGGGGATAATACTCCATAGGCTACGGA
AGCTGGAATGCTCTGTAACCGAAAGTTCCGGCGCCCTAGGATGGGTCTGCGGCCGATTAG
GTTGTTGTTGGGGTAACGGCCCAACAAGCCGATCATCGGTACGGGTTGTGGGAGCAAGA
GCCCGGAGATGGATTCTGAGACATGAATCCAGGCCCTGCGGGGCGCAGCAGGCGCGAAAA
CTTTACAATGCGGGAAACCGTGATAAGGGAACTCCGAGTGCCCGTAAAATCGGGCTGTCC
ATCAGTGTAAATAACTGGTGAAGAAAGGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGT
AATACCGGCGGCTCGAGTGGTGGCCACTATTACTGGGCTTAAAGCGTTCGTAGCTGGTTT
GTTAAGTCTCTGGGGAAATCTGCCGGCTCAACCGGCAGGTGTTCCAGGGATACTGGCAGA
CTAGGGACCGGGAGAGGTGAGAGGTACTCTAGGGGTAGGAGTGAAATCCTGTAATCCTT
GGGGGACCACCTGTGGCGAAGGCGTCTCACCAGAACGACTCCGACGGTGAGGGACGAAAG
CTGGGGGAGCAAACCGGATTAGATACCCGGGTAGTCCCAGCTGTAAACGATGCGCGTTAG
GTGTATCGGTGACTACGAGTTACCGAGGTGCCGAAGGGAAACCGTGAAACGTGCCGCCTG
GGAAGTACGGTCGCAAGGCTGAAACTTAAAGGAATTGGCGGGGGAGCACCACAACGGGT
GGAGCTTGCGGTTTAATTGGATTCAACGCCCGGAAATCTTACCGGGACCGACAGCAATAT
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GAAGGCCAGGCTGAAGACCTTGCCGGATTAGCTGAGAGGTGGTGCATGGCCGTCGTCAGT
TCGTACTGTGAAGCATCCTGTTAAGTCAGGCAACGAGCGAGACCCA 
 
S10-2011 
TCTCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAGCCATGCA
GCACCTGTCTCTAGGCTCCCTTGCGGGCACCCCACCATCTCCGCCAGGATCAACCAGATTG
ATCCCGGCGGAGGCCACTGCTATCGGAGTTCGATTAAGCCATGCGAGTCGAGAGGTGCAA
GACCTCGGCATACTGCTCAGTAACACGTGGACAACCTAACCTATGGAGGGGGATAACCCC
GGGAAACTGGGGATAATACCCCATAGACTATGATGCTGGAATGCTTCNTANTTGAAAGG
TCCGCCGCTGTANGATGGGTCTGCGGCCGATTAGGCTGTTGTTGGGGTAACGGCCCAACG
AGCCTGTAATCGGTACGGGTTGTGGGAGCAAGANCCCGGAGATGGATTCTGAGACACGA
ATCCAGGCCCTACGGGGCGCAGCNGGCGCGAAAACTTTGCAATGCGGGAAACCGTGACAA
GGGAACTCTGAGTGCCCGTTAAATCGGGCTGTCCATCGGTTTAAATAACCGGTGAAGAA
AGGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGTAATACCGGCGGCTCGAGTGGTGGCCA
CTATTACTGGGCTTAAAGCGTTCGTAGCTGGTCTGTTAAGTCTCTGGGGAAATCTACTGG
CTTAACCAATAGGCGTTTCAGGGATACTGGCAGACTAGGGACCGGGAGAGGTGAGAGGT
ACTCCAGGGGTAGGAGTGAAATCCTGTAATCCTTGGGGGACCACCTGTGGCGAAGGCGT
NTCACCAGAACGGCTCCGACAGTGGGGGGACGAAAGCTGGGGGCGCAAACCGGATTAGA
TACCCGGGTAGTCCCAGCTGTAAACGATGCGCGTTAGGTGTATCGGTGACCACGAGTCAC
CGAGGTGCCGAAGAGAAATCGTGAAACGTGCCGCCTGGGAAGTACGGTCGCAAGGCTGA
AACTTAAAGGAATTGGCGGGGGAGCACCACAACAGGTGGAGCCTGCGGTTTAATCGGAC
TCAACGCCGGGAATCTCACCGGATAAGACAGCTGTATGATAGTCGGGCTGAAGACTCTAC
TTGACTAGCTGAGAGGAGGTGCATGGCCGTCGTCAGTTCGTACTGTGAAGCATCCTGTTA
AGTCAGGCAACGAGCGAGACCCA 
 
S11-2011 
TCTCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAGCCATGCA
GCACCTGTCTCTAGGCTCCCTTGCGGGCACCCCACCATCTCCGCCAGGATCAACCAGATTG
ATCCCGGCGGAGGCCACTGCTATCGGAGTTCGATTAAGCCATGCGAGTCGAGAGGTGCAA
GACCTCGGCATACTGCTCAGTAACACGTGGACAACCTAACCTATGGAGGGGGATAACCCC
GGGAAACTGGGGATAATACCCCATAGACTATGGAGGCTGGAATGCTCTGTAGTTGAAAG
GCCCGCCGCCATAGGATGGGTCTGCGGCCGATTAGGTTGTTGTTGGGGTGACGGCCCAAC
AAGCCTGTAATCGGTACGGGTTGTGGGAGCAAGAGCCCGGAGATGGATTCTGAGACACG
AATCCAGGCCCTACGGGGCGCAGCAGGCGCGAAAACTTTGCGATGCGAGAAATCGTGACA
AGGGAACTCCGAGTGCCCGTAAATTCGGGCTGTCCATCGGTTTAAATAACCGGTGAAGAA
AGGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGTAATACCGGCGGCTCGAGTGGTGGCCA
CTATTACTGGGCTTAAAGCGTCCGTAGCTGGTCTGTTAAGTCTCTGGGGAAATCTACCGG
CTTAACCGGTAGGCGTTTCAGGGATACTGGCAGACTAGGGACCGGGAGAGGTGAGAGGT
ACTCCAGGGGTAGGAGTGAAATCCTGTAATCCTTGGGGGACCACCTGTGGCGAAGGCGTC
TCACCAGAACGGNTCCGACAGTGAGGGACGAAAGCTGGGGGAGCAAACCGGATTAGATA
CCCGGGTAGTCCCAGCTGTAAACGATGCGCGTTAGGTGTATCGGTGACCACGAGTCACCG
AGGTGCCGAAGAGAAATCGTGAAACGTGCCGCCTGGGAAGTACGGTCGCAAGGCTGAAA
CTTAAAGGAATTGGCGGGGGAGCACCACAACAGGTGGAGCCTGCGGTTTAATCGGACTC
AACGCCGGAAATCTCACCGGATAAGACAGCTGGATGATAGTCGGGCTGAAGACTCTACTT
GACTAGCTGAGAGGAGGTGCATGGCCGTCGTCAGTTCGTACTGCGAAGCATCCTGTTAAG
TCAGGCAACGAGCGAGACCCA 
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S12-2011 
TCCGGTTGATCCTGCCAGAGGTCACTGCTATCGGGGTTCGACTAAGCCATGCAAGTCGAG
AGGGGTCAAGCCCTCGGCGAACTGCTCAGTAACACGTGGATAACCTGACCTAGGGTGGAG
GATAACCCCGGGAAACTGGGGATAATACTCCATAGGCTACGGAAGCTGGAATGCTCTGT
AACCGAAAGCTCCGGCGCCCTAGGATGGGTCTGCGGCCGATTAGGTTGTTGTTGGGGTAA
CGGCCCAACAAGCCGATCATCGGTACGGGTTGTGGGAGCAAGAGCCCGGAGATGGATTCT
GAGACATGAATCCAGGCCCTACGGGGCGCAGCAGGCGCGAAAACTTTACAATGTGGGAA
ACCGTGATAAGGGGACCCCGAGTGCCTGTACACGCAGGCTGTTCAGGTGTTTAAAACGCA
TCTGGAGAAAGGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGTAATACCGGCGGCTCGAG
TGGTGGCCACTATTACTGGGCTTAAAACGTCCGTAGCCGGGTTGTTAAGTCTCCTGGGAA
ATCCAACGGCTCAACCGTTGGGCGTTCAGGGGATACTGGCAATCTAGGGATCGGGGGAGG
TGAGAGGTACTCTAGGGGTAGGAGTGAAATCCTGTAATCCTTGGGGGACCACCTGTGGC
GAAGGCGTCTCACCAGAACGACTCCGACGGTGAGGGACGAAAGCTGGGGGAGCAAACCG
GATTAGATACCCGGGTAGTCCCAGCTGTAAACGATGCGCGCTAGGTGTATCGGTGACTAC
GAGTTACCGAGGTGCCGAAGGGAAACCGTGGAACGTGCCGCCTGGGAAGTACGGCCGCAA
GGCTGAAACTTAAAGGAATTGGCGGGGGAGCACACAACGGGTGGAGCCTGCGGTTTAAT
TGGACTCAACGCCGGGAAGCTCACCGGGTAAGACAGCGGAGTGATAGCCAGGCTGAAGA
CTTTGCTTGACCAGCTGAGAGGAGGTACATGGCCGTCGTCAGTTCGTACTGTGAAGCATC
CTGTTAAGTCAGGCAACGAGC 
 
S13-2011 
TCCGGTTGATCCTGCCAGAGGTCACTGCTATCGGGGTTCGACTAAGCCATGCAAGTCGAG
AGGGGTCAAGCCCTCGGCGAACTGCTCAGTAACACGTGGATAACCTGACCTAGGGTGGAG
GATAACCCCGGGAAACTGGGGATAATACTCCATAGGCTACGGAAGCTGGAATGCTCTGT
AACCGAAAGCTCCGGCGCCCTAGGATGGGTCTGCGGCCGATTAGGTTGTTGTTGGGGTAA
CGGCCCAACAAGCCGATCATCGGTACGGGTTGTGGGAGCAAGAGCCCGGAGATGGATTCT
GAGACATGAATCCAGGCCCTACGGGGCGCAGCAGGCGCGAAAACTTTACAATGTGGGAA
ACCGTGATAAGGGGACCCCGAGTGCCTGTACACGCAGGCTGTTCAGGTGTTTAAAACGCA
TCTGGAGAAAGGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGTAATACCGGCGGCTCGAG
TGGTGGCCACTATTACTGGGCTTAAAACGTCCGTAGCCGGGTTGTTAAGTCTCCTGGGAA
ATCCAACGGCTCAACCGTTGGGCGTTCAGGGGATACTGGCAATCTAGGGATCGGGGGAGG
TGAGAGGTACTCTAGGGGTAGGAGTGAAATCCTGTAATCCTTGGGGGACCACCTGTGGC
GAAGGCGTCTCACCAGAACGACTCCGACGGTGAGGGACGAAAGCTGGGGGAGCAAACCG
GATTAGATACCCGGGTAGTCCCAGCTGTAAACGATGCGCGCTAGGTGTATCGGTGACTAC
GAGTTACCGAGGTGCCGAAGGGAAACCGTGGAACGTGCCGCCTGGGAAGTACGGCCGCAA
GGCTGAAACTTAAAGGAATTGGCGGGGGAGCACACAACGGGTGGAGCCTGCGGTTTAAT
TGGACTCAACGCCGGGAAGCTCACCGGGTAAGACAGCGGAGTGATAGCCAGGCTGAAGA
CTTTGCTTGACCAGCTGAGAGGAGGTACATGGCCGTCGTCAGTTCGTACTGTGAAGCATC
CTGTTAAGTCAGGCAACGAGCGA 
 
S14-2011 
TGATCCCGGCAGAGGTCACTGCTATCGGGGTTCGACTAAGCCATGCAAGTCGAGAGGGGT
CAAGCCCTCGGCGAACTGCTCAGTAACACGTGGATAACCTGACCTAGGGTGGAGGATAAC
CCCGGGAAACTGGGGATAATACTCCATAGGCTACGGAAGCTGGAATGCTCTGTAACCGAA
AGCTCCGGCGCCCTAGGATGGGTCTGCGGCCGTTTAGGTTGTTGTTGGGGTAACGGCCCA
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ACAAGCCGATCATCGGTACGGGTTGTGGGAGCAAGAGCCCGGAGGTGGATTCTGAGACA
TGAATCCAGGCCCTACGGGGCGCAGCAGGCGCGAAAACTTTACAATGCGGGAAACCGTGA
TAAGGGGACCCCGAGTGCCTGTACACGCAGGCTGTTCAGGTGTTTAAAACGCATCTGGAG
AAAGGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGTAATACCGGCGGCTCGAGTGGTGGC
CACTATTACTGGGCTTAAAGCGTCCGTAGCCGGGTTGTTAAGTCTCCTGGGAAATCCAAC
GGCTCAACCGTTGGGCGTTCAGGGGATACTGGCAATCTAGGGATCGGGGGAGGTGAGAG
GTACTCTAGGGGTAGGAGTGAAATCCTGTAATCCTTGGGGGACCACCTGTGGCGAAGGCG
TCTCACCAGAACGACTCCGACGGTGAGGGACGAAAGCTGGGGGAGCAAACCGGATTAGA
TACCCGGGTAGTCCCAGCTGTAAACGATGCGCGTTAGGTGTATCGGTGACTACGAGTTAC
CGAGGTGCCGAAGGGAAACCGTGAAACGTGCCGCCTGGGAAGTACGGTCGCAAGGCTGA
AACTTAAAGGAATTGGCGGGGGAGCACCACAACGGGTGGAGCCTGCGGTTTAATTGGAC
TCAACGCCGGGAAGCTCACCGGGTAAGACAGCGGAGTGATAGCCAGGCTGAAGACTTTGC
TTGACCAGCTGAGAGGAGGTGCATGGCCGTCGTCAGTTCGTACTGTGAAGCATCCTGTTA
AGCCAGGCAACGAGCGAGACCCA 
 
S15-2011 
TTGATCCTGGCAGAGGTCACTGCTATCGGGGTTCGACTAAGCCATGCAAGTCGAGAGGGG
TCAAGCCCTCGGCGAACTGCTCAGTAACACGTAGATAACCTGACCTAGGGTGGAGGATAA
CCCCGGGAAACTGGGGATAATACTCCATAGGCTACGGAAGCTGGAATGCTCTGTAACCGA
AAGCTCCGGCGCCCTAGGATGGGTCTGCGGCCGATTAGGTTGTTGTTGGGGTAACGGCCC
AACAAGCCGATCATCGGTACGGGTTGTGGGAGCAAGAGCCCGGAGATGGATTCTGAGAC
ATGAATCCAGGCCCTACGGGGCGCAGCAGGCGCGAAAACTTTACAATGCGGGAAACCGTG
ATAAGGGGACCCCGAGTGCCTGTACACGCAGGCTGTTCAGGTGTTTAAAACGCATCTGGA
GAAAGGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGTAATACCGGCGGCTCGAGTGGTGG
CCACTATTACTGGGCTTAAAGCGTCCGTAGCCGGGTTGTTAAGTCTCCTGGGAAATCCAA
CGGCTCAACCGTTGGGCGTTCAGGGGATACTGGCAATCTAGGGATCGGGGGAGGTGAGA
GGTACTCTAGGGGTAGGAGTGAAATCCTGCAATCCTTGGGGGACCACCTGTGGCGAAGGC
GTCTCACCAGAACGACTCCGACGGTGAGGGACGAAAGCTGGGGGAGCAAACCGGATTAG
ATACCCGGGTAGTCCCAGCTGTAAACGATGCGCGTTAGGTGTATCGGTGACTACGAGTTA
CCGAGGTGCCGAAGGGAAACCGTGAAACGTGCCGCCTGGGAAGTACGGTCGCAAGGCTGA
AACTTAAAGGAATTGGCGGTGGAGCACCACAACGGGTGGAGCCTGCGGTTTAATTGGAC
TCAACGCCGGGAAGCTCACCGGGTAAGACAGCGGAGTGATAGCCGGGCTGAAGACTTTGC
TTGACCAGCTGAGAGGAGGTGCATGGCCGTCGTCAGTTCGTACTGTGAAGCATCCTGTTA
AGTCAGGCAACGAGCGAGACCCA 
 
S16-2011 
TTGATCCCGGCGGAGGTCACTGCTATCGAGGTTCGACTAAGCCATGCGAGTCGAATGTAG
CAATACATGGCGTACTGCTCAGTAACACGTGGGTAACCTACCCTTAGGACGGGGATAAAC
CCGGGAAACTGGGTATAATACCCGATAGATCTCGACTGCTGGAATGCATCGAGCTTGAA
AGCTCCGGCGCCTAAGGATGGATCTGCGGCCTATCAGGTAGTAGTGGGTGTAGCGTACCT
ACTAGCCTACGATGGGTACGGGTTGTGAGAGCAAGAGCCTGGAGATGGATTCTGAGACA
CGAATCCAGGCCCTACGGGGTACAGCAGGCGCGAAAACTTTACAATGCTGGAAACAGCGA
TAAGGGGACCTCGAGTGCCAGGTTACAAATCTGGCTGTCGTGATGCCTAAAAAGCATTGC
ATAGCAAGGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGTAACACCGGCGGCTCGAGTGG
TAACCGTTATTATTGGGTCTAAAGGGTCTGTAGCCGGCCGGATAAGTCTCTTGGGAAATC
TGGCAGCTTAACTGTCAGGCTTTCAGGAGATACTGTCTGGCTCGAGGCCGGGAGAGGTGA
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GAGGTACTTCAGGGGTAGGGGTGAAATCTTATAATCCTTGAAGGACCACCAGTGGCGAA
GGCGTCTCACCAGAACGGACCTGACGGCAAGGGACGAAAGCTAGGGGCACGAACCGGATT
AGATACCCGGGTAGTCCTAGCCGTAAACGATACTCGCTAGGTGTCGGCCACGGTGCGACC
GTTGTCGGTGCCGTAGGGAAGCCGTGAAGCGAGCCACCTGGGAAGTACGGCCGCAAGGCT
GAAACTTAAAGGAATTGGCGGGGGAGCACCACAACGGGTGGAGCTTGCGGTTTAATTGG
ATTCAACGCCGGAAATCTTACCGGGACCGACAGCGATATGAAGGCCAGGCTGAAGACTTT
GCCGGATTAGCTGAGAGGTGGTGCATGGCCGTCGTCAGTTCGTACTGTGAAGCATCCTGT
TAAGTCAGGCAACGAGCGAGACCCA 
 
S17-2011 
TTGATCCCGGCGGAGGTCACTGCTATCGAGGTTCGACTAAGCCATGCGAGTCGAATGTAG
CAATACATGGCGTACTGCTCAGTAACACGTGGGTAACCTACCCTTAGGACGGGGATAAAC
CCGGGAAACTGGGTATAATACCCGATAGATCTCGACTGCTGGAATGCATCGAGCTTGAA
AGCTCCGGCGCCTAAGGATGGATCTGCGGCCTATCAGGTAGTAGTGGGTGTAGCGTACCT
ACTAGCCTACGATGGGTACGGGTTGTGAGAGCAAGAGCCTGGAGATGGATTCTGAGACA
CGAATCCAGGCCCTACGGGGTACAGCAGGCGCGAAAACTTTACAATGCTGGAAACAGCGA
TAAGGGGACCTCGAGTGCCAGGTTACAAATCTGGCTGTCGTGATGCCTAAAAAGCATTGC
ATAGCAAGGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGTAACACCGGCGGCTCGAGTGG
TAACCGTTATTATTGGGTCTAAAGGGTCTGTAGCCGGCCGGATAAGTCTCTTGGGAAATC
TGGCAGCTTAACTGTCAGGCTTTCAGGAGATACTGTCTGGCTCGAGGCCGGGAGAGGTGA
GAGGTACTTCAGGGGTAGGGGTGAAATCTTATAATCCTTGAAGGACCACCAGTGGCGAA
GGCGTCTCACCAGAACGGACCTGACGGCAAGGGACGAAAGCTAGGGGCACGAACCGGATT
AGATACCCGGGTAGTCCTAGCCGTAAACGATACTCGCTAGGTGTCGGCCACGGTGCGACC
GTTGTCGGTGCCGTAGGGAAGCCGTGAAGCGAGCCACCTGGGAAGTACGGCCGCAAGGCT
GAAACTTAAAGGAATTGGCGGGGGAGCACCACAACGGGTGGAGCTTGCGGTTTAATTGG
ATTCAACGCCGGAAATCTTACCGGGACCGACAGCGATATGAAGGCCAGGCTGAAGACTTT
GCCGGATTAGCTGAGAGGTGGTGCATGGCCGTCGTCAGTTCGTACTGTGAAGCATCCTGT
TAAGTCAGGCAACGAGCGAGACCCA 
 
S18-2011 
TTTGATCCTGGCAGAGGCCACTGCTATCGGGGTTCGATTAAGCCATGCGAGTCGAGAGGT
GCAAGACCTCGGCGCACTGCTCAGTAACACGTGGACAACCTACCCTGAGGAGAGGGATAA
CCCCGGAAAACTGGGGATAATACCTCATAGACCAGGGATGCTGGAATGCTTCCTGGTCCA
AAGGTCCGCCGCCTCAGGATGGGTCTGCGGCCGATTAGGTTGTTGTTGGGGTAACGGCCC
AACAAGCCTTTGATCGGTACGGGTTGTGGGAGCAAGAGCCCGGAGATGGATTCTGAGAC
ACGAATCCAGGCCCTACGGGGCGCAGCAGGCGCGAAAACTTTACAATGCGAGAAATCGTG
ATAAGGGAACCCCGAGTGCCCGTAAATCCGGGCTGCCCATCAGTGTAAATAACTGGTGAA
GAAAGGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGTAATACCGGCGGCTCGAGTGGTGG
CCGCTATTACTGGGCTTAAAGCGTTCGTAGCTGGGCTGTTAAGTCCCCTGGGAAATCCAC
CGGCTCAACCGATGGGCGTTCAGGGGATACTGGCAGCCTAGGGACCGGGAGAGGTGAGG
GGTACTCCAGGGGTAGGAGTGAAATCCTGTAATCCTTGGGGGACCACCTGTGGCGAAGGC
GTCTCACTAGAACGGCTCCGACAGTGAGGAACGAAAGCTGGGGGAGCAAACCGGATTAG
ATACCCGGGTAGTCCCAGCTGTAAACGATGCGCGTTAGGTGTATCGGTGACCACGAGTCA
CCGAGGTGCCGAAGAGAAATCGTGAAACGTGCCGCCTGGGAAGTACGGTCGCAAGGCTG
AAACTTAAAGGAATTGGCGGGGGAGCACCACAACGGGTGGAGCCTGCGGTTTAATCGGA
CTCAACGCCGGAAATCTCACCGGATAAGACAGCTGGATGATAGCCGGGCTGAAGACTCTG
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CTTGACTAGCTGAGAGGAGGTGCATGGCCGTCGTCAGTTCGTACTGTGAAGCATCCTGTT
AAGTCAGGCAACGAGCGAGACCCA 
 
S19-2011 
TTGATCCTGGCAGAGGCCACTGCTATCGGGGTTCGATTAAGCCATGCGAGTCGAGAGGTG
CAAGACCTCGGCGCACTGCTCAGTAACACGTGGACAACCTACCCTGAGGAGAGGGATAAC
CCCGGAAAACTGGGGATAATACCTCATAGACCAGGGATGCTGGAATGCTTCCTGGTCCAA
AGGTCCGCCGCCTCAGGATGGGTCTGCGGCCGATTAGGTTGTTGTTGGGGTAACGGCCCA
ACAAGCCTTTGATCGGTACGGGTTGTGGGAGCAAGAGCCCGGAGATGGATTCTGAGACA
CGAATCCAGGCCCTACGGGGCGCAGCAGGCGCGAAAACTTTACAATGCGAGAAATCGTGA
TAAGGGAACCCCGAGTGCCCGTAAATCCGGGCTGCCCATCAGTGTAAATAACTGGTGAAG
AAAGGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGTAATACCGGCGGCTCGAGTGGTGGC
CGCTATTACTGGGCTTAAAGCGTTCGTAGCTGGGCTGTTAAGTCCCCTGGGAAATCCACC
GGCTCAACCGATGGGCGTTCAGGGGATACTGGCAGCCTAGGGACCGGGAGAGGTGAGGG
GTACTCCAGGGGTAGGAGTGAAATCCTGTAATCCTTGGGGGACCACCTGTGGCGAAGGCG
TCTCACTAGAACGGCTCCGACAGTGAGGAACGAAAGCTGGGGGAGCAAACCGGATTAGA
TACCCGGGTAGTCCCAGCTGTAAACGATGCGCGTTAGGTGTATCGGTGACCACGAGTCAC
CGAGGTGCCGAAGAGAAATCGTGAAACGTGCCGCCTGGGAAGTACGGTCGCAAGGCTGA
AACTTAAAGGAATTGGCGGGGGAGCACCACAACGGGTGGAGCCTGCGGTTTAATCGGAC
TCAACGCCGGAAATCTCACCGGATAAGACAGCTGGATGATAGCCGGGCTGAAGACTCTGC
TTGACTAGCTGAGAGGAGGTGCATGGCCGTCGTCAGTTCGTACTGTGAAGCATCCTGTTA
AGTCAGGCAACGAGCGAGACCCA 
 
S20-2011 
TTGATCCTGGCAGAGGCCACTGCTATCGGAGTTCGATTAAGCCATGCGAGTCGAGAGGTG
CAAGACCTCGGCATACTGCTCAGTAACACGTGGACAATCTACCCTAAGGAGGGGGGTAAC
CCCGGGAAACTGGGGATAATACCCCATAGACTATGGATGCTGGAATGCTCTGTAGTTGA
AAGGTCCGCCGCCGTAGGATGGGTCTGCGGCCGATTAGGTTGTTGTTGGGGTAACGGCCC
AACAAGCCTGTAATCGGTACGGGTTGTGGGAGCAAGAGCCCGGAGATGGATTCTGAGAC
ACGAATCCAGGCCCTACGGGGCGCAGCAGGCGCGAAAACTTTGCAATGCGGGAAACCGTG
ACAAGGGAACTCTGAGTGCCCGTTAAATCGGGCTGTCCATCGGTTTAAACAACCGGTGAA
GAAAGGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGTAATACCGGCGGCTCGAGTGGTGG
CCACTATTACTGGGCTTAAAGCGTTCGTAGCCGGTTTGTTAAGTCTCTGGGGAAATCTTC
CGGCTCAACCGGAAGGCGTCTCAGGGATACTGGCAGACTAGGGACCGGGAGAGGTGAGA
GGTACTCCAGGGGTAGGAGTGAAATCCTGTAATCCTTGGGGGACCACCTGTGGCGAAGGC
GTCTCACCAGAACGGCTCCGACAGTGAGGGACGAAAGCTGGGGGAGCAAACCGGATTAG
ATACCCGGGTAGTCCCAGCTGTAAACGATGCGCGTTAGGTGTATCGGAGACCACGAGTCA
CCGAGGTGCCGAAGAGAAATCGTGAAACGTGCCGCCTGGGAAGTACGGTCGCAAGGCTG
AAACTTAAAGGAATTGGCGGGGGAGCACCACGACGGGTGGAGCCTGCGGTTTAATCGGA
CTCAACGCCGGGAAACTCACCAGATAAGACAGCTGAATGATAGTCGGGCTGAAGACTCTA
CTTGACTAGCTGAGAGGAGGTGCATGGCCGTCGTCAGTTCGTACTGTGAAGCATCCTGTC
AAGTCAGGCAACGAGCGAGACCCA 
 
S21-2011 
CCGGTTGATCCCGGCAGAGGCCACTGCTATCGGAGTTCGATTAAGCCATGCGAGTCGAGA
GGTGCAAGACCTCGGCATACTGCTCAGTAACACGTGGACAACCTACCCTATGGAGGGGGA
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TAACCCCGGGAAACTGGGGATAATACCCCATAGACTATGAATGCTGGAATGCTTTGTAG
TTGAAAGGTCCGCCGCCATAGGATGGGTCTGCGGCCGATTAGGTTGTTGTTGGGGTAACG
GCCCAACAAGCCTGTAATCGGTACGGGTTGTGGGAGCAAGAGCCCGGAGATGGACTCTGA
GACACGAATCCAGGCCCTACGGGGCGCAGCAGGCGCGAAAACTTTACAATGCGGGAAACC
GTGATAAGGGAACTCCGAGCGCCCGTAAAATCGGGCTGTCCATCTGTTTAAATAACAGGT
GAAGAAAGGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGTAATACCGGCGGCTCGAGTGG
TGGCCACTATTACTGGGCTTAAAGCGTTCGTAGCTGGTCTGTTAAGTCTCTGGGGAAATC
TACTGGCTTAACCAATAGGCGTTTCAGGGGTACTGGCAGACTAGGGACCGGGAGAGGTG
AGGGGTACTCCAGGGGTAGGAGTGAAATCCTGTAATCCTTGGGGGACCACCTGTGGCGA
AGGCGCCTCACCAGAACGGCTCCGACAGTGAGGGACGAAAGCTGGGGGAGCAAACCGGAT
TAGATACCCGGGTAGTCCCAGCCGTGAACGATGCGCGTTAGGTGTATCGGTGACCATGAG
TCACCGAGGTGCCGAAGAGAAATCGTGAAACGTGCCGCCTGGGAAGTACGGTCGCAAGGC
TGAAACTTAAAGGAATTGGCGGGGGAGCACCACAACAGGTGGAGCCTGCGGTTTAATCG
GACTCAACGCCGGAAATCTCACCGGATAAGACAGCTGTATGATAGTCGGGCTGAAGACTC
TACTTGACTAGCTGAGAGGAGGTGCATGGCCGTCGTCAGTTCGTACTGTGAAGCATCCTG
TTAAGTCAGGCAACGAGC 
 
S22-2011 
GCTCGTTGCCTGACTTAACAGGATGCTTCACAGTACGAACTGACGACGGCCATGCACCTC
CTCTCAGCTAGTCAAGTAGAGTCTTCAGCCCGACTATCATACAGCTGTCTTATCCGGTGA
GATTTCCGGCGTTGAGTCCGATTAAACCGCAGGCTCCACCTGTTGTGGTGCTCCCCCGCC
AATTCCTTTAAGTTTCAGCCTTGCGACCGTACTTCCCAGGCGGCACGTTTCACGATTTCT
CTTCGGCACCTCGGTGACTCATGGTCACCGATACACCTAACGCGCATCGTTCACGGCTGG
GACTACCCGGGTATCTAATCCGGTTTGCTCCCCCAGCTTTCGTCCCTCACTGTCGGAGCCG
TTCTGGTGAGGCGCCTTCGCCACAGGTGGTCCCCCAAGGATTACAGGATTTCACTCCTAC
CCCTGGAGTACCCCTCACCTCTCCCGGTCCCTAGTCTGCCAGTACCCCTGAAACGCCTATT
GGTTAAGCCAGTAGATTTCCCCAGAGACTTAACAGACCAGCTACGAACGCTTTAAGCCCA
GTAATAGTGGCCACCACTCGAGCCGCCGGTATTACCGCGGCGGCTGGCACCGGTCTTGCC
CGGCCCTTTCTTCACCTGTTATTTAAACAGATGGACAGCCCGATTTTACGGGCGCTCGGA
GTTCCCTTATCACGGTTTCCCGCATTGTAAAGTTTTCGCGCCTGCTGCGCCCCGTAGGGC
CTGGATTCGTGTCTCAGAGTCCATCTCCGGGCTCTTGCTCCCACAACCCGTACCGATTAC
AGGCTTGTTGGGCCGTTACCCCAACAACAACCTAATCGGCCGCAGACCCATCCTATGGCG
GCGGACCTTTCAACTACAAAGCATTCCAGCATTCATAGTCTATGGGGTATTATCCCCAGT
TTCCCGGGGTTATCCCCCTCCATAGGGTAGGTTGTCCACGTGTTACTGAGCAGTATGCCG
AGGTCTTGCACCTCTCGACTCGCATGGCTTAATCGAACTCCGATAGCAGTGGCCTCTGCC
GGGATCAACCGG 
 
S23-2011 
GATCCTGGCGGAGGTTACTGCTATCGAGGTTCGACTAAGCCATGCGAGTCGAATGTAGCA
ATACATGGCGTACTGCTCAGTAACACGTGGATAACCTACCCTTAGGACGGGGATAAACCC
GGGAAACTGGGTATAATACCCGATAGATTTCGATTGCTGGAATGCATTGAGATCTAAAG
CTCCGGCGCCTAAGGATGGATCTGCGGCCTATCAGGTAGTAGTGGGTGTAGCGTACCTAC
TAGCCTACGACGGGTACGGGTTGTGAGAGCAAGAGCCCGGAGATGGATTCTGAGACACG
AATCCAGGCCCTACGGGGTGCAGCAGGCGCGAAAACTTTACAATGCTGGAAACAGCGATA
AGGGGACCTCGAGTGCCAGGTTACAAATCTGGCTGTCGTGATGCCTAAAAAGCATTGCAT
AGCAAGGGCCGGTCAAGACCGGTGCCAGCCGCCGCGGTAACACCGGCGGCTCGAGTGGTA
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ACCGTTATTATTGGGTCTAAAGGGTCTGTAGCCGGCCGGATAAGTCTCTTGGGGAATCTG
GCAGCTTAACTGTCAGGCTTTCAGGAGATACTGTCTGGCTCGAGGCCGGGAGAGGTGAGA
GGTACTTCAGGGGTAGGGGTGAAATCTTGTAATCCTTGAAGGACCACCAGTGGCGAAGG
CGTCTCACCAGAACGGACCTGACGGCAAGGGACGAAAGCTAGGGGCACGAACCGGATTAG
ATACCCGGGTAGTCCTAGCCGTAAACGATACTCGCTAGGTGTCGGCCACGGTGCGACCGT
TGTCGGTGCCGTAGGGAAGCCGTGAAGCGAGCCACCTGGGAAGTACGGCCGCAAGGCTGA
AACTTAAAGGAATTGGCGGGGGAGCACCACAACGGGTGGAGCTTGCGGTTTAATTGGAT
TCAACGCCGGAAATCTTACCGGGACCGACAGCAATATGAAGGCCAGGCTGAAGACTTTGC
CGGATTAGCTGAGAGGTGGTGCATGGCCGCCGTCAGTTCGTACTGTGAAGCATCCTGTTA
AGTCAGGCAACGAGCGAGACCCA 
 
 
S24-2011 
TTGATCCTGGCAGAGGTCACTGCTATCGGGGTTCGACTAAGCCATGCAAGTCGAGAGGGG
TCAAGCCCTCGGCGAACTGCTCAGTAACACGTGGATAACCTGACCTAGGGTGGAGGATAA
CCCCGGGAAACTGGGGATAATACTCCATAGGCTACGGAAGCTGGAATGCTCTGTAACCGA
AAGCTCCGGCGCCCCAGGATGGGTCTGCGGCCGATTAGGTTGTTGTTGGGGTAACGGCCC
GACAAGCCGATCATCGGTACGGGTTGTGGGAGCAAGAGCCCGGAGATGGATTCTGAGAC
ATGAATCCAGGCCCTACGGGGCGCAGCAGGCGCGAAAACTTTACAATGCGGGAAACCGTG
ATAAGGGGACCCCGAGTGCCTGTACACGCAGGCTGTTCAGGTGTTTAAAACGCATCTGGA
GAAAGGGCCGGGCAAGGCCGGTGCCAGCCGCCGCGGTAATACCGGCGGCTCGAGTGGTGG
CCACTATTACTGGGCTTAAAGCGTCCGTAGCCGGGTTATTAAGTCTCCTGGGAAATCCAA
CGGCCCAACCGTTGGGCGTTCAGGGGATACTGGCAATCTAGGGATCGGGGGAGGTGAGA
GGTACTCTAGGGGTAGGAGTGAAATCCTGTAATCCTTGGGGGACCACCTGTGGCGAAGGC
GTCTCACCAGAACGACTCCGACGGTGAGGGACGAAAGCTGGGGGAGCAAACCGGATTAG
ATACCCGGGTAGTCCCAGCTGTAAACGATGCGCGTTAGGTGTATCGGCGACTACGAGTTA
CCGAGGTGCCGAAGGGAAACCGTGAAACGTGCCGCCTGGGAAGTACGGTCGCAAGGCTGA
AACTTAAAGGAATTGGCGGGGGAGCACCACAACGGGTGGAGCCTGCGGTTTAATTGGAC
TCAACGCCGGGAAGCTCACCGGGTAAGACAGCGGAGTGATAGCCAGGCTGAAGACTTTGC
TTGACCAGCTGAGAGGAGGTGCATGGCCGTCGTCAGTTCGTACTGTGAAGCATCCTGTTA
AGTCAGGCAACGAGCGAGACCCA 
 
S26-2011 
TCGGTCTCGCTCGTTGCCTGACTTAACAGGATGCTTCACAGTACGAACTGACGACGGCCA
TGCACCACCTCTCAGCTAATCCGGCAAAGTCTTCAGCCTGGCCTTCATATTGCTGTCGGT
CCCGGGTAAGATTTCCGGCCGTGAAATCCAAATTAACCCGCAAGCTCCACCCGTTGTGGT
GTTCCCCCGCCAATTCCTTTAAGTTTCACCCTTGCGGCCGTACTTCCCAGGTGGCTCGCTT
CACGGCTTCCCTACGGCACCGACAACGGTCGCACCGTGGCCGACACCTAGCGAGTATCGT
TTACGGCTAGGACTACCCGGGTATCTAATCCGGTTCGTGCCCCTAGCTTTCGTCCCTTGC
CGTCAGGTCCGTTCTGGTGAGACGCCTTCGCCACTGGTGGTCCTTCAAGGATTACAAGAT
TTCACCCCTACCCCTGAAGTACCTCTCACCTCTCCCGGCCTCGAGCCAGACAGTATCTCCT
GAAAGCCCAACAGTTGAGCTGCTGGATTTCTCAAGAGACTTATCCGGCCGGCTACAGACC
CTTTAGACCCAATAATAACGGTTACCACTCGAGCCGCCGGTGTTACCGCGGCGGCTGGCA
CCGGTCTTGCCCGGCCCTTGCTATGCAATGCTTTTTAGGCATCACGACAGCCAGATTTGT
AACCTGGCACTCGAGGTCCCCTTATCGCCGTTGCCGGCATTGTAAAGTTTTCGCGCCTGC
TGCACCCCGTAGGGCCTGGATTCGTGTCTCAGAATCCATCTCCGGGCTCTTGCTCTCACA
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ACCCGTACCCGTCGTAGGCTAGTAGGTACGCTACACCCACTACTACCTGATAAGGCCCAA
AACCCTTCTCTGGGGGCCGAAACTTTTAATTTTGGGGCTTTCCAGCGACCCAAATTTAAT
GGGGAATTAAACCAGTTTTCCCGGGGTTTTACCCCTCCGGAGGGTAAGGTTGTCCCCTTG
TTTCTGAAGCATACCCCCTG 
 
S27-2011 
AAAAAAAAGTAAAGAATAAAAAAAAATATAAAAAAAAAAAAAAAAATAAAGAAATAAA
AAACAAAATATAAATAAATAATAAAAATATTAGATATATATATAAAAAAAAAAATAAA
GAAACATAAAAATAAAATTAAAGTCAAAAATAAAGATAAAAAGAATATAACAGTATAA
ACATAATTAATAGAAAGAAAAGTTACAAGATAATTATAAAGAAAAAATAAAAAAAAAA
TAATCAAAAAAACAACACACAGAAATAATTAAAAATAAGAAATTAACAAAGTTAAAAA
AAAGATATAATACCACAAAATTTAATCAATAAAAGTAAGAACAAGTTAAAGGAAAAAAC
TATAAACAACAGAGGGTACCCCAAGAATTACAAGATTTCAAATACTACCCCAAGAATAC
CACTCACCTCCCCCGGTACATAGTCAGCCAGTTTATCATAAACGCCCATCGGTTTGAGCA
GATGGATTTCCCAGGAGACATAACAACCAAGCTACGGACGCTTTAAGCCCAGTAATAGT
GGCCACCACTCGAGCCGCCGGTATTACCGCGGCGGCTGGCACCGGTCTTGCCCGGCTCTTT
CTTCACCAGTTTTTTGCACTGGCGGACAGCCCGAATTTACGGGCACTCGGGGTTCCCTTA
TCACGATTTCCCGCATTGTAAAGTTCTCGCGCCTGCTGCGCCCCGTAGGGCCTGGATTCG
TGTCTCAAAATCCATCTCCGGGCTCTTGCTTCCCCAACCCGTACCGATCAAAGGCTTGTT
GGGCCGTTACCCCAACAACAACCTATTCCGCCGCAGACCCCTCCTATGGGGGGGGAACTT
TTTAATTACAAAAGAATTCAGCCTCTTAAGTCTATGGGGGTATTATCCCCAGTTTCCCCG
GGGTTTTCCCCCCTCCATAGGTTAGGTTGTCCACGTGTTACTGAGCAGTATGCCGAGGTC
TTGCACCTCTCGACTCGCATGGCTTAATCGAACTCCGATAGCAGTGGCCTCCGCCGGGAT
CAACCAGA 
 
S28-2011 
TCTGGTTGATCCTGGCGGAGGCCACTGCTATCAGAGTTCGATTAAGCCATGCGAGTCGAG
AGGTGCAAGACCTCGGCATACTGCTCAGTAACACGTGGACAATCTAACCTATGGAGGGGG
GAAAACCCCGGGAAACTGGGGATAATACCCCATAGACTATGGATGCTGGTATGCTCTGT
AGTTGAAAGGTCCGCCGCCATAGGATGGGTCTGCGGCCGATTAGGTTGTTGTTGGGGTAC
CGCCCCAACAAGCCTGTTAATCGGTACGGGTGGTGGGAGCAAGAGCCCGGAGATGGTTTT
TGAGGCACGAATCCAGGCCCTACGGGGCGCAGCAGGCGCGAAAACTTTACAATGCGGGAA
ACCGTGATAAGGGAACTCCGAGTGCCCGTAAAATCGGGCTGTCCATCTGTTTAAATAACA
GGTGAAGAAAGGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGTAATACCGGCGGCTCGAG
TGGTGGCCACTATTACTGGGCTTAAAGCGTCCGTAGCCGGGTTGTTAAGTCTCCTGGGAA
ATCCAACGGCTCAACCGTTGGGCGTTCAGGGGATACTGGCAATCTAGGGATCGGGGGAGG
TGAGAGGTACTCTAGGGGTAGGAGTGAAATCCTGTAATCCTTGGGGGACCACCTGTGGC
GAAGGCGTCTCACCAGAACGACTCCGACGGTGAGGGACGAAAGCTGGGGGAGCAAACCG
GATTAGATACCCGGGTAGTCCCGGCTGTAAACGATGCGCGTTAGGTGTATCGGTGACTAC
GAGTTACCGAGGTGCCGAAAGGGAAACCGTGAAAACTTGCCCCCGGGGAAGTACGGGTCC
AAGGGCTGAAACTTAAAGGAATTTGGGGGGGGAGCACCACCACCGGGGGGAGCCTGCGG
GTTAATTGGAATTCACCGCCGGGAAACTTCACCCGGGAAAAACACCGAAGGGATATTCCA
GGCTTAAAAACTTTTCTTTGTCTCACTTTGAAAGAAG 
 
S29-2011 
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CTGGTTGATCCTGGCAGAGGTTACTGCTATCGAGGTTCGACTAAGCCATGCGAGTCGAAT
GTAGCAATACATGGCGTACAGCTCAGTAACACGTGGACAACCTACCCTCAGGACGGGGAT
AAACCCGGGAAACTGGGTATAATACCCGATAGTCCTCGGAAGCTGCAATGCCCCGAGAAC
TAAAGCTCCGGCGCCTAAGGATGGGTCTGCGGCCTATCAGGTAGTAGTGGGTGTAGCGTA
CCTACTAGCCTACGACGGGTACGGGTTGTGAGAGCAAGAGCCCGGAGATGGATTCTGAG
ACACGAATCCAGGCCCTACGGGGTGCAGCAGGCGCGAAAACTTTACAATGCCGGCAACGG
CGATAAGGGGACCTCGAGTGCCAGGTTACAAATCTGGCTGTCGTGATGCCTAAAAAGCAT
TGCATAGCAAGGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGTAACACCGGCGGCTCGAG
TGGTAACCGTTATTATTGGGTCTAAAGGGTCTGTAGCCGGCCGGATAAGTCTCTTGGGA
AATCTGGCAGCTTAACTGTCAGGCTTTCAGGAGATACTGTCTGGCTCGAGGCCGGGAGAG
GTGAGAGGTACTTCAGGGGTAGGGGTGAAATCTTGTAATCCTTGAAGGACCACCAGTGG
CGAAGGCGTCTCACCAGAACGGACCTGACGGCAAGGGACGAAAGCTAGGGGCACGAACCG
GATTAGATACCCGGGTAGTCCTAGCCGTAAACGATACTCGCTAGGTGTCGGCCACGGTGC
GACCGTTGTCGGTGCCGTAGGGAAGCCGTGAAGCGAGCCACCTGGGAAGTACGGCCGCAA
GGCTGAAACCTTAAAGGAATTGGCGGGGGAGCACCACAAACGGGTGGAGCTTGCGGTTT
ATTTGGATTCAACGCCGGAAAATCTTACCGGGACCCGACAGCAATATGAAGGCCAGGCTG
AAGACTTTGCCGGATTAGCTGAGAGGTGGTGCATGGCCGTCGTCAGTTCGTACTGTGAAG
CATCCTGTTAAGTCAGGCAACGAGCGAGACCCA 
 
S31-2011 
TGGGTCTCGCTCGTTGCCTGACTTAACAGGATGCTTCACAGTACGAACTGACGACGGCCA
TGCACCTCCTCTCAGCTGGTCAAGCAAAGTCTTCAGCCTGGCTATCACTCCGCTGTCTTA
CCCGGTGAGCTTCCCGGCGTTGATTCCAAATAAACCCCAAGGCTCCACCCGTTGTGGTGC
TCCCCCGCCAATTCCTTTAAGTTTCAAGCCTTGCGACCGTACTTCCCAGGCGGCACGTTTC
ACGGTTTTCCTTTCGGCACCTCGGTAACTCGTAGTCACCGATACACCTAACGCGCATCGT
TTACAGCTGGGACTACCCGGGTATCTAATCCGGTTTGCTCCCCCAGCTTTCGTCCCTCACC
GTCGGAGTCGTTCTGGTGAGACGCCTTCGCCACAGGTGGTCCCCCAAGGATTACAGGATT
TCACTCCTACCCCTAGAGTACCTCTCACCTCCCCCGATCCCTAGATTGCCAGTATCCCCTG
AACGCCCAACGGTTGAGCCGTTGGATTTCCCAGGAGACTTAACAACCCGGCTACGGACGC
TTTAAGCCCAGTAATAGTGCCACCACTCGAGCCGCCGGTATTACCGCGGCGGCTGGCACC
GGTCTTGCCCGGCCCTTTCTCCAGATGCGTCTTAAACACCTGAACAGCCTGCGTGTACAG
GCACTCGGGGTCCCCTTATCACGGTTTCCCGCATTGTAAAGTTTTCGCGCCTGCTGCGCCC
CGTAGGGCCTGGATTCATGTCTCAGAATCCATCTCCGGGCTCTTGCTCCCACAACCCGTA
CCGATGATCGGCTTGTTGGGCCGTTACCCCAACAACGACCTAATCGGCCGCAGACCCATC
CTAGGGCGCCGGAGCTTCCGGTTACAGAGCATTCCAGCTTCCGTAGCCTATGGAGTATTA
TCCCCAGTTTCCCGGGGTTATCCTCCACCCTAGGTCAGGTTATCCACGTGTTACTGAACA
ATTTCC 
 
S32-2011 
TGGGTCTCGCTCGTTGCCTGACTTAACAGGATGCTTCACAGTACGAACTGACGACGGCCA
TGCACCTCCTCTCAGCTAGTCAAGTAGAGTCTTCAGCCCGACTATCATCCAGCTGTCCTA
TCCGGTGAGATTTCCGGCGTTGAGTCCGATTAAACCGCAGGCTCCACCTGTTGTGGTGCT
CCCCCGCCAATTCCTTTAAGTTTCAGCCTTGCGACCGTACTTCCCAGGCGGCACGTTTCAC
GATTTCTCTTCGGCACCTCGGTGACTCGTGGTCACCGATACACCTAACGCGCATCGTTTA
CAGCTGGGACTACCCGGGTATCTAATCCGGTTTGCTCCCCCAGCTTTCGTCCCTCACTGTC
GGAGCCGTTCTGGTGAGGCGCCTTCGCCACAGGTGGTCCCCCAAGGATTACAGGATTTCA
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CTCCTACCCCTGGAGTACCCCTCACCTCTCCCGGTCCCTAGTCTGCCAGTATCCCTGGAAC
GCCTGCCGGTTGAGCCGGCAGATTTCCCCAGAGACTTAACAAACCAGCTACGAACGCTTT
AAGCCCAGTAATAGTGGCCACCACTCGAGCCGCCGGTATTACCGCGGCGGCTGGCACCGG
TCTTGCCCGGCCCTTTCTTCACCTGTTATTTAAACAGATGGACAGCCCGATTTTACGGGC
ACTCGGAGTTCCCTTATCACGGTTTCCCGCATTGTAAAGTTTTTCGCGCCTGCTGCGCCC
GTAGGGCCTGGATTCGTGTCTCAGAATCCATCTCCGGGCTCTTGCTCTCACAACCCGTAC
CCGTCGTAGGCTAGTAGGTACGCTACACCCACTACTACCTGATAGGCCGCAGACCCATGC
CTTGGGCACCGGAGCTTTCAATCTCGATGCATTTCCAGCTTCCGAGATCTATCGGGTATT
ATACCCAGTTTCCCGGGTTTATCCCCGTCCCAAGGGTAAGTTTGTTCACGTGGTTCTGAA
CA 
 
S33-2011 
TCGGTCTCGCTCGTTGCCCCATTGTCCGGTTGATCCTGGCAGAGGTCACTGCTATCGGTG
TCCGATTAAGCCATGCGAGCCGTGAGGTGTAAGACCTCGGCATACTGCTCAGTAACACGT
GGATAACCTGCCCAAGAGTCCGGGGAAAACCCCGGGAAACTGGGGAAAAATCCGGGATG
AATCACCTTGCACGGAAGGGCTTGGTTGTTTAAAGGGAAACGTTTTTGGATGGTTCTGC
GGCGGATTAGGTTGACGCCCGTGTAAACGACCGGGCGTCCCTGTAATCCGTACGGGTTGG
GGGAGCCAAGAGCCCGGAGATGGATTTTGAGACACGAATCCAGGCCCTACGGGGCGCAGC
AGGCGCGAAAACTCTACAATGCAGGCAACTGCGATAGGGGGACATCGAGTGGCTTCCACC
TTGGGTGCCTGTCCAACCGTCTAAAAAACGGTTGTTAGCAAGGGCCGGGTAAGACCGGTG
CCAGCCGCCGCGGTAATACCGGCGGCTCGAGTGGTGGCCGATATTATTGAGTCTAAAGGG
TCCGTAGCCGGCTTTGCAAGTCCCCTGGGAAATCCAGCGGCTTAACCGTTGGGCTTTCAT
GGGATACTACATTGCTTGGGACTGGGAGAGGTAGGAGGTACTCGGGGGGTAGGGGTGAA
ATCCTGTAATCCTTTGGGGACCACCGGTGGCGAAGGCGTCCTACCAGAACAAGTCCGACG
GTGAGGGACGAAAGCTAGGGGCACGAACCGGATCAGATACCCGGGTAGTCCCAGCTGTA
AACGATGCGCGTTAGGTGTATCGGTGACCACGAGTCACCGAGGTGCCGAAGGGAAACCGT
GAAACGCGCCGCCTGGGAAGTACGGTCGCAAGGCTGAAACTTAAAGGAATTGTCGGGGG
AGCACCACAACGGGTGGAGCCTGCGGTTTAATCGGACTCAACGCCGGGAAATTCCTCCGA
AAAAAAAACAAAATGAAAACCCGGGTTTAAAAATCTGCTTG 
 
S34-2011 
TCTGGTTGATCCTGGCGGAGGTCACTGCTATCGGGGTTCGACTAAGCCATGCAAGTCGAG
AGGGGTAAAGCCCTCGGCGAACTGCTCAGTAACACGTGGATAACCTGACCTAGGGTGGAG
GATAACCCCGGGAAACTGGGGATAATACTCCATAGGCTACGGAAGCTGGAATGCTCTGT
AACCGAAAGTTCCGGCGCCCTAGGATGGGTCTGCGGCCGATTAGGTTGTTGTTGGGGTAA
CGGCCCAACAAGCCGATCATCGGTACGGGTTGTGGGAGCAAGAGCCCGGAGATGGATTCT
GAGACATGAATCCAGGCCCTACGGGGCGCAGCAGGCGCGAAAACTTTACAATGCGGGAA
ACCGTGATAAGGGAACTCCGAGTGCCCGTAAAATCGGGCTGTCCATCTGTTTAAATAACA
GGTGAAGAAAGGGCCGGGCAAGACCGGCGCCAGCCGCCGCGGTAATACCGGCGGCTCGAG
TGGTGGCCACTATTACTGGGCTTAAAGCGTTCGTAGCTGGTTTGTTAAGTCTCTGGGGAA
ATCTGCCGGCTCAACCGGCAGGCGTTCCAGGGATACTGGCAGACTAGGGACCGGGAGAGG
TGAGGGGTACTCCAGGGGTAGGAGTGAAATCCTGTAATCCTTGGGGGACCACCTGTGGCG
AAGGCGCCTCACCAGAACGGCTCCGACAGTGAGGGACGAAAGCTGGGGGAGCAAACCGG
ATTAGATACCCGGGTAGTCCCAGCCGTAAACGATGCGCGTTAGGTGTATCGGTGACCACG
AGTCACCGAGGTGCCGAAGGGAAACCGTGAAACGTGGCGCCTGGGAAGTACGGTCGCAA
GGCTGAAACTTAAAGGAATTGGCGGGGGGAGCACCACAACGGGGTGGAGCCTGCGGGTT
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AATTGGACTCAACGCCGGGGAAGCTCACCGGGGAAGAAAGCGGATTGAAAGCCAGGCTG
AAGACTTTGCTTGACCAGCTGAGAGGAGGTGCATGGCCGTCGTCGGTTCGTACTGTGAAG
CATCCTGTTAAGTCAGGCAACGAGCGAGACCCA 
 
S35-2011 
TGTTTTCTCGCTCGTTGCCTGACTTAACAGGATGCTTCACAGTACGAACTGACGACGGCC
ATGCACCTCCTCTCAGCTAGTCAAGTAGAGTCTTCAGCCCGACTATCATCCAGCTGTCTT
ATCCGGAGAGATTTCCGGCGTTGAGTCCGATTAAACCGCAGGCTCCACCTGTTGTGGTGC
TCCCCCGCCAATTCCTTTAAGTTTCAGCCTTGCGACCGTACTTCCCAGGCGGCACGTTTCA
CGATTTCTCTTCGGCACCTCGATGACTCGTGGTCATCGATACACCTAACGCGCATCGTTT
ACAGCTGGGACTACCCGGGTATCTATCCGGTTTGCTCCCCCAGCTTTCGTCCCTCACTGTC
GGAGCCGTTCTGGTGAGACGCCTTCGCCACAGGTGGTCCCCCAAGGATTACAGGATTTCA
CTCCTACCCCTGGAGTACCTCTCACCTCTCCCGGTCCCTAGTCTGCCAGATCCCTGATACG
CCTATTGGTTAAGCCAGTAGATTTCCCCAGATACTTAACAGACCAGCTACGATCGCTTTA
ATCCCAGTAATAGTGGCCATCACTCGAGCCGCCGGTTTTACCGCGGCGGCAGGTTCCGGT
CTTGCCCGTCTCTTTTTTTCTCTTTGTTATTTAAACTGATGTACATCCTTATTTTTCTTT
TCATTCGGATTTCCCTTTAT 
 
S36-2011 
TCGGTCTCGCTCGTTGCCTGACTTAACAGGATGCTTCACAGTACGAACTGACGACGGCCA
TGCACCTCCTCTCAGCTGGTCAAGCAAAGTCTTCAGCCTGGCTATCACTCCGCTGTTTTA
CCCCGTGAAGTTTCCCGGCGTTGAGTTCAAATAAACCGCAGCTTCCACCCGTTGTGGTGC
TTCCCCCGCCAATTCCTTAAAGTTTCACCCTTGCGACCGTACTTCCCAGGCGGCACGTTTC
ACGATTTCTCTTGGGCACCTCGGTGACTCGTGGTCACCGATACACTAAACGCGCATCGTT
TACGGCTGGGACTACCCGGGTATCTAATCCGGTTTGCTCCCCCAGCTTTCGTCCCTCACTG
TCGGAGCCGTTCTGGTGAGGCGCCTTCGCCACAGGTGGTCCCCCAAGGATTACAGGATTT
CACTCCTACCCCTGGAGTACCCCTCACCTCTCCCGGTCCCTAGTCTGCCAGTATCCCTGGA
ACGCCTGCCGGTTGAGCCGGCAGATTTCCCCAGAGACTTAACAAACCAGCTACGAACGCT
TTAAGCCCAGTAATAGTGGCCACCACTCGAGCCGCCGGTATTACCGCGGCGGCTGGCACC
GGTCTTGCCCGGCCCTTTCTTCACCTGTTATTTAAACAGATGGACAGCCCGATTTTACGG
GCACCCCGAAGTTCCCTTATCACGGTTTCCCGCATTGTAAAGTTTTCGCGCCTGCTGCGC
CCCGTAGGGCCTGGATTCGTGTCTCAGAATCCATCTCCGGGCTCTTGCTCCCACAACCCGT
ACCGATTACAGGCTTGTTGGGCCGTTACCCCAACAACAACCTAATCGGCCGCAGACCCAT
CCTATGGCGGCGGACCTTTCAACTACAGAGCATTCCAGCCTCCATAGTCTATGGGGTATT
ATCCCCAGTTTCCCGGGGTTATCCCCCTCCATAGGTAAGGTTTTCCCTGGTTTTTGAAAA
ATATGCAAGGTTTTGCCTTCTTTACTCCTA 
 
S38-2011 
TCTGGTTGATCCTGGCGGAGGTTACTGCTATCGAGGTTCGACTAAGCCATGCGAGTCGAA
TGTAGCAATACATGGCGTACTGCTCAGTAACACGTGGATAACCTGCCCTTAGGACGGGGA
TAAACCCGGGAAACTGGGTATAATACCCGATAGATCTCGATTGCTGGGATGCATCGAGCT
CTAAAGCTCCGGCGCCTAAGGATGGATCTGCGGCCTATCAGGTAGTAGTGGGTGCAGCGT
ACCTACTAGCCTACGACGGGTACGGGTTGTGAGAGCAAGAGCCCGGAGATGGATTCTGA
GACACGAATCCAGGCCCTACGGGGTGCAGCAGGCGCGAAAACTTTACAATGCTGGCAACA
GCGATAAGGGGACCTCGAGGGCCAGGTTACAAACCTGGCTGTCGTGATGCCTAAAAAGC
ATTGCATAGCAAGGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGTAACACCGGCGGCTCG
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AGTGGTAACCGTTATTATTGGGTCTAAAGGGTCTGTAGCCGGCCGGATAAGTCTCTTGGG
AAATCTGGCAGCTTAACTGTCAGGCTTTCAGGAGATACCGTCTGGCTCGAGGCCGGGAGA
GGTGAGAGGTACTTCAGGGGTAGGGGTGAAATCTTGTAATCCTTGAAGGACCACCAGTG
GCGAAGGCGTCTCACCAGAACGGACCTGACGGCAAGGGACGAAAGCTAGGGGCACGAACC
GGATTAGATACCCGGGTAGTCCTAGCCGTAAACGATACTCGCTAGGTGTCGGCCACGGTG
CGACCGAGATAGGTACAGTAGGGAAACCGTGAAAGCGAGCCACCTGGGAAGTACGGCCG
CAAAGGCTGAAACTTAAAGGAATCGGCGGGGGAACACCACAACGGGGGGGAGCTTGCGA
TTTTAATTGAATTTCACGCCGGAAATCTTAACCGGGACCCGACAGCAATATTAAAGGCCA
GGCTTGAAAACTTTGCCTGGATTACTTGAAAAGTGGGGGCTAGGGCCTTCGCCCATTCCT
ATATGGGGAAG 
 
S39-2011 
TTAAACAAGATTTTTTACAAAGTAAAAAATGGGGGGCGGCCCCAACCCCCTTCTTTTCAA
ATATACAAAGCAAGTTTTTCAACCCGGGTTTTCAACCACAGTTTTTTTTTCCGGGAGACC
TTCCCGGGGGGTTAATTCCAAATAAACCCGCAGGCCTCCACCCGTGGTGGGGCTCCCCCA
CCAATTTCCTTTAAATTTCCAGCCTAGGGACCGTTTTTCCCAGAGCGGTACGTTTCAAGA
TTTTTTTTTCGACACCTGGGAGAACTGGGGTTCACCGAAACCCTTAACGCACATCGTTTA
CAGCTGGGACTACCCGGGTATCTAATCCGGTTTGCTCCCCCAGCTTTCGTCCCTCACTGTC
GGAGCCGTTCTAGTGAGACGCCTTCGCCACAGGTGGTCCCCCAAGGATTACAGGATTTCA
CTCCTACCCCTGGAGTACCTCTCACCTCTCCCGGTCCCTAGGCTGCCAGTATCCCCTGAAC
GCCCATCGGTTAAGCCGATGGATTTCCCAGGGGACTTAACAGCCCAGCTACGGACGCTTT
AAGCCCAGTAATTAGCGGCCACCACTCGAGCCGCCGGTATTACCGCGGCGGCTGGCACCG
GTCTTGCCCGGCCCTTTCTTCACCAGCTTTTTAAACTGGCGGACAGCCCGAATTTACGGG
CACTCGGGGTTCCCTTATCACGATTTCTCGCATTGTAAAGTTTTCGCGCCTGCTGCGCCC
CGTAGGGCCTGGATTCGTGTCTCAGAATCCATCTCCGGGCTCTTGCTCCCACAACCCGTT
ACGATCAATTGGCTTGTTGGGGCGTTACCCCAACAACAACCTAATCGGCCGCAGACCCAT
CCGGAGGCGGGTGAACTTTTGGACCAGGGAGCATTCCAACTCCCCTGATCTAATGGGGGA
TTATCCCCAGTTTTCCGGGGGTATTTCCCCTCCTCAGGGTAGGTTGTCCACCGGGTTATT
GAACAAGGGGCCCAAGGTT 
 
S40-2011 
CCCACCCACCCCCTTTTCAAATAATTCGGGGAAATTTATTAGACCTGGCCATTAATATGG
ATGTGGGTTCCGGAAAGATTTTCGGGGGTAAAATACAAAAAAACCGCAAGCTCCACCCG
GTTTGGTGCTCCCCCCGCCAACTCTTTTAATTTTAACCCTTGCGGCTGTATTTCACAAGG
GGCTGGTTTCAGGTCTTCCCAAAAGCACAAACAACGGTCGCACCGTGGCCGACACCAAGA
AAGTATCGTTTACGGCTAGGACTACCGGGGTATCTAATCGGGTTCGTGCCCCTAGCTTTC
GTCCCTGGCCGTCAGGTCCGTTGTGGTGAGACGCTTTCGCCACTGGTGGTCTTTCAAGGA
TTACAAGATTTCACCCCTACCCCTGAAGTACCTCTCACCTCTCCCGGCCTCGAGCCAGACA
GTATCTCCTGAAAGCCTGACAGTTAAGCTGCCAGATTTCCCAAGAGACTTATCCGGCCGG
CTACAAGACCCTTTAGACCCAATAATAACGGTTACCACTCGAGCCGCCGGTGTTACCGCG
GCGGCTGGCACCGGTCTTGCCCGGCCCTTGCTATGCAATGCTTTTTAGGCATCACGACAG
CCAGATTTGTTACCTGGCACTCGAGGGCCCCTTATCGCTGTTGCCAGCATTGTAAAGTTT
TTCCGCCCGCTGCACCCCGTAAGGGTTGAATTCGTGTCTTAAAATCCATCTCCCGGCTCT
TGCTCTTCCAACCCCTACCCGTCTTAAGCTAGTAAGGACGCTACACCCCCTACTACCTGA
TAAGGCCCCAAACCATCCTTTAGCGCCGGAACCTTTAAATTTCTATTCTTTCCACCGAAA
AAAAACTTATTGGGGATTATACCCCAGTTTCCCGGGTTTATCCCCGACCTAAGGGTAGGT
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TGTCCACGTGTTACTGAGCAGTACGCCATGTATTGCTACATTCGACTCGCATGGCTTAGT
CGAACCTCGATAGCAGTAGC 
 
S41-2011 
GCCAAGAACCTTGGCAATTTTTTCCATAAACACGTGGACACCTTCCCCTTGGAAGGGGGT
TAACCCCGGGAAAACTGGGGATATTCCCCCATAGACTATAGATGCTGGAATGCTTTGTAG
TTGAAAGGTCCGCCGCCATAGGATGGGTCTGCGGCCGATTAGGGTGTTGTTGGGGGTACG
GCCCAAACAAGCCTGTATTGGTTACGGGTTGTGGGAGCAAGAACCCCGGAGATGGATTT
TGAGACACGATTCCAGGCCTTACGGGGCGCAGCAGGCGCGAAAACTTTACAATGCGGGAA
ACCGTGATAAGGGAACTCCGAGTGCCCGTAAAATCGGGCTGTCCATCTGTTTGAATAACA
GGTGAAGAAAGGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGTAATACCGGCGGCTCGAG
TGGTGGCCACTATTACTGGGCTTAAAGCGTTCGTAGCTGGTTTGTTAAGTCTCTGGGGAA
ATCTGCCGGCTCAACCGGCAGGCGTTCCAGGGATTCTGGCAGACTAGGGACCGGGAGAGG
TGAGGGGTACTCCAGGGGTAGGAGTGAAATCCTGTAATCCTTGGGGGACCACCTGTGGCG
AAGGCGCCTCACCAGAACGGCTCCGACAGTGAGGGACGAAAGCTGGGGGAGCAAACCGG
ATTAGATACCCGGGTAGTCCCAGCCGTAAACGATGCGCGTTAGGTGTATCGGTGACCACG
AGTCACCGAGGTGCCGAAGAGAAATCGTGAAACGTGCCGCCTGGGAAGTACGGTTGCAA
GGCTGAAACTTAAAGGAATTGGCGGGGGAGCACCACAACAGGTGGAGCCTGCGGTTTGA
TCGGACTCAACGCCGGAAATCTCCCCGGAATAAAAAAGCTGGGATGATATTCGGGGTGA
AAAACCCTCTTTGACTAACTGAAAAGAAGGGGATGGGCCCTTCTTCCTTTTA 
 
S42-2011 
AATTAAATATAAAAAAAATGTTAATTATTTAGAACAAGGAGGAAAACTAACCATTTAAA
ATAAGGAAATAAACCGAGAAAAATAAAGTAAATAACACAATATATTATTAAAAGTTAT
AATACAATGAAAAAAAAAAATTCTAGAGGAAAAAGAATGGAATTTAAGCATATTAAGT
AAAAATTAGATTAAACAAACTAATTAATTTATAAAAGATAAGGTTAATAAAAACAAAG
GACCAGAAAATAGTATATGAAAAAAGAATTCAAACCATAAAGGGTACAGCAGCGGAAAA
AACTTTACATAGCTGGCAACAGCGATAAAGGGACATCAAGTGACAGATTACAAATATGG
CTGTAGTGATGCTTAAAAAGCATTGCATAGCAAAGGCCGGGCAAGACCGGTGCCAGCCGC
CGCGGTAACACCGGCGGCTCGAGTGGTAACAGTTATTATTGGGTATAAAGGGTCTGTAG
CCGGCCGGATAAGTCTCTTGGGAAATCTGGCAGCTTAACTGTCAGGCTTTCAGGAGATAC
TGTCTAGCTCGAGGCCGGGAGAGGTGAGAGGTACTTCAGGGGTAGGGGTGAAAACTTGT
AATCCTTGAAGGACCACCAGTGGCGAAGGCGTCTCACCAGAACGGACCTGACGGCAAGGG
ACGAAAGCTAGGGGCACGAACCGGATTAGATACCCGGGTAGTCCTAGCCGTAAACGATAC
TCGCTAGGTGTCGGCCACGGTGCGACCGTTGTCGGTGCCGTAGGGAAGCCGTGAAGCGAG
CCACCTGGGAAGTACGGCCGCAAGGCTGAAACTTAAAGGAATTGGCGGGGGAGCACCAC
AACGGGGGGAAGCTTGCGGTTTTATTTGGATCTACCCCCCGAAAACTTTACCGGAACCGA
CCACCAAATTTAAAGGCCAGGCTGAAAAAATTTTTCGGAATTAATCTGAAAAGGGGGGG
GGATGGGCCGTCCCTCCGTTTCTAATTGGTAAAAAATCCTTT 
 
 
S43-2011 
ACAAAAACAGGCCAAAATTGTTCATTAAAACCGGGGCCAACCTTCCCTGGGACAGGGGG
AAAAACCCGGGAAAACTGGGTTAATTACCGAATAATTCTGAAAGGTGGGAATGCTTGGA
GTTCGAAAGCTCCGGCGGTTCAGGAAGGGTTTGCGGCCTATCAGGTATTAGTGGGTGTA
ACGTACCTATAAGCTTACGACGGGTACGGGTTGTGAGAGCAAGAGCCCGGAGATGGTTT
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TTGAGACACGAATCCAGGCCTTACGGGGTGCAGCAGGCGCGAAAACTTTACAATGCTGGC
AACAGCGATAAGGGGACCTCGAGTGCCAGGATACAATCTTGGCTGTCGTGATGCCTAAA
AAGCATTGCATAGCAAGGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGTAACACCGGCGG
CTCGAGTGGTAACCGCTATTATTGGGTCTAAAGGGTCTGTAGCCGGCCGGATAAGTCTTT
TGGGAAATCCAGCTGCTCAACAGTTGGGCTTCCAGAAGATACTGTTCGGCTCGAGGCCGG
GAGAGGTGAGAGGTACTTCAGGGGTAGGGGTGAAATCTTGTAATCCTTGAAGGACCACC
AGTGGCGAAGGCGTCTCACCAGAACGGTCCTGACGGCAAGGGACGAAAGCTAGGGGCAC
GAACCGGATTAGATACCCGGGTAGTCCTAGCCGTAAACGATACTCGCTAGGTGTCAGCCA
CGGTGCGACCGTGGCTGGTGCCGTAGGGAAGCCGTGAAGCGAGCCACCTGGGAAGTACGG
CCGCAAGGCTGAAACTTAAAGGAATTGGCGGGGGAGCACTACAACGGGTGGAGCCTGCG
GTTTAATTGGATTCAACACCGGGAAGCTTACCGGGATCGACAGCAATATGAAGGCCAGG
TTGAAAAACCTTGCCGGGATTACTTTAAAAAGGGGGGGTGGGGCCCCCCCCTCATTTCTA
ATGGGTAAAAATCCCTGTTTAATCAAGGA 
 
S44-2011 
TGGGTCTCGCTCGTTGCCTGACTTAACAGGATGCTTCACAGTACGAACTGACGACGGCCA
TGCACCTCCTCTCAGCTAGTCAAGTAGAGTCTTCAGCCCGACTATCATTCAGCTGTCTTA
CCTGGGGGAGTTTCCCGGGTTGAATTCAGATTTAACCGCCAGCTTCCCCCGGTGGGGTGC
TCCCCCGCCAAATTCTTTTAAGTTTCAGCCTTGCGACCGTACTTCCCCGGCGGCCACGTTT
CACGATTTTTCTTCGGCACCTCGGTGACTCGTGGTCACCGATACACTTAACGCGCATCGT
TTACGGCTGGGACTACCCGGGTATCTAATCCGGTTTGCTCCCCCAGCTTACGTCCCTCAC
TGTCGGAGCCGTTCTGGTGAGGCGCCTTCGCCACAGGTGGTCCCCCAAGGATTACAGGAT
TTCACTCCTACCCCTGGAGTACCCCTCACCTCTCCCGGTCCCTAGTCTGCCAGTATCCCTG
GAACGCCTGCCGGTTGAGCCGGCAGATTTCCCCAGAGACTTAACAAACCAGCTACGAACG
CTTTAAGCCCAGTAATAGTGGCCACCACTCGAGCCGCCGGTATTACCGCGGCGGCTGGCA
CCGGTCTTGCCCGGCCCTTTCTTCACCTGTTATTTAAACAGATGGACAGCCCGATTTTAC
GGGCACTCGGAGTTCCCTTATCACGGTTTCCCGCATTGTAAAGTTTTCGCGCCTGCTGCG
CCCCGTAGGGCCTGGATTCGTGTCTCAGAATCCATCTCCGGGCTCTTGCTCCCACAACCCG
TACCGATTACAGGCTTGTTGGGCCGTTACCCCAACAACAACCTAATCGGCCGCAGACCCA
TCCTATGGCGGCGGACCTTTCAACTACAGAGCATTCCAGCATCCATAGTCTATGGGGTAT
TATCCCCAGTTTCCCGGGGTTATTCCCCCTCCTTAAGGTAAGTGGTCCACGTGGTATCTG
ACCAGTTTGGCCAAGGTCTTGGACCT 
 
S45-2011 
TTGAGAGGGGGTACAACCCTTCGGCAAACTTCTTCAATAACCAGTGGGATACCCTGACCT
AGGGTGGAGGATAACCCCGGGAAACTGGGGATAATACTCCATAGGCTACGGAAGCTGGA
ATGCTCTGTAACCGAAAGCTCCGGCGCCCTAGGATGGGTCTGCGGCCGATTAGGTTGTTG
TTGGGGTAACGGCCCAACAAGCCGATCATCGGTACGGGTTGTGGGAGCAAGAGCCCGGAG
ATGGATTCTGTGACATGAATCCAGGCCCTACGGGGCGCAGCAGGCGCGAAAACTTTACAA
TGCGGGAAACCGTGATAAGGGGACCCCCGAGTGCCTGTACACGCAGGCTGTTCAGGTGTT
TAAAACGCATCTGGAGAAAGGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGTAATACCGG
CGGCTCGAGTGGTGGCCACTATTACTGGGCTTAAAGCGTCCGTAGCCGGGTTGTTAAGTC
TCCTGGGAAATCCAACGGCTCAACCGTTGGGCGTTTAGGGGATACTGGCAATCTAGGGAT
CGGGGGAGGTGAGAGGTACTCTAGGGGTAGGAGTGAAATCCTGTAATCCTTGGGGGACC
ACCTGTGGCGAAGGCGTCTCACCAGAACGACTCCGACGGTGAGGGACGAAAGCTGGGGGA
GCAAACCGGATTAGATACCCGGGTAGTCCCAGCTGTAAACGATGCGCGTTAGGTGTATCG
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GTGACTACGAGTTACCGAGGTGCCGAAGGGAAACCGTGAAACGTGCCGCCTGGGAAATA
CGGTCCCCAGGGTTGAAACTTAAAGGAATTGGCGGGGGGACACCCCAACCAGTGGGACCC
GGCGGTTTTATCGGACTCAACGCCCGGAATCTTCCCGGGAAAAAAAGCTTGTTTGAAATT
CGGGTTGAAAACTCTACTTGACTTACTGAGAAGGGAGG 
 
S47-2011 
GGAAGATCCAGATAAAAAATGGGAAAACATTGCACAAAAAGTATGGGATAACACTTTGG
GAACAGGGGATAATACCGGATGGGTCATTCGTCCTGGAATGGTGTTTGGCCTAAAGCTT
TGGCGCTTTTGGATGGGTCTGCGGCTGATTAGGTTGTTGCCGGTGTAACGTACCGGCAAG
CCTGTAATCAGTACGGGTTGTGGGAGCAAGAGCCCGGAGATGGATTCTGAGACACGAAT
CCAGGCCCTTACGGGGCGCAGCAGGCGCGAAAACTTTACAAATGCAGGTAACTGCGATAA
GGGGACATCGAGTGGCACGCATAATGTGTGTCTGTCCATCCGTCTAAAAAACGGGTGTTA
GCAAGGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGTAATACCGGCGGCTCGAGTGGTGG
CCGATATTATTGAGTCTAAAGGGTCCGTAGCCGGCTTTGCAAGTCCTTTGGGAAATCCAG
CGGCTTAACCGTTGGGCGTCCGGGGGGTACTACATTGCTTGGGACTGGGAGAGGTAGGA
GGTACTCAAGGGGTAGGAGTGAAATCCTGTAATCCTTTGGGGACCACCGGTGGCGAAGG
CGTCCTACCAGAACAGGTCCGACGGTGAGGGACGAAAGCTAGGGGCACGAACCGGATTA
GATACCCGGGTAGTCCTAGCCGTAAACGATGCTCGCTAGGTGTCACGATAGTCGTGAATT
ATCGTGGTGCCGTAGGGAAGCCGTGAAGCGAGCCACTTGGGAAGTACGACCGCAAGGTT
GAAACTTAAAGGAATTGGCGGGGGAGCACCACAACGGGTGGAGCCTGCGGTTTAATTGG
ACTCAACGCCGGGAAGCTTACCGGGATCGACAGTTGTATGAAGGCCAGGCTGAAGACCTT
GCCGGACTATCTGAGAGGAGGTGCATGGCCGCCGTCAGTTCGTACCGTGAGGCGTCCTGT
TAAGTCAGGCAACGAGCGAGACCCA 
 
S49-2011 
TGGGTCTCGCTCGTTGCCTGACTTAACAGGATGCTTCACAGTACGAACTGACGACGGCCA
TGCACCTCCTCTCAGCTAGTCAAGTGGAGTCTTCAGCCCGACTATCATCCAGCCGTCTTA
TCCGGTGAGATTTCCGGCGTTGAGTCCGATTAAACCGCAGGCTCCACCTGTTGTGGTGCT
CCCCCGCCAATTCCTTTAAGTTTCAGCCTTGCGACCGTACTTCCCAGGCGGCACGTTTCAC
GATTTCTCTTCGGCACCTCGGTGACTCGTGGTCACCGATACACCTAACGCGCATCGTTTA
CAGCTGGGACTACCCGGGTATCTAATCCGGTTTGCCCCCCCAGCTTTCGTCCCTCACTGTC
GGAGCCGTTCTGGTGAGGCGCCTTCGCCACAGGTGGTCCCCCAAGGATTACAGGATTTCA
CTCCTACCCCTGGAGTACCCCTCACCTCTCCCGGTCCCTAGTCTGCCAGTATCCCTGAAAC
GCCTGCCCGGTTAAGCCGGCAGATTTCCCCAGAGACTTAACAAACCAGCTACGAACGCTT
TAAGCCCAGTAATAGTGGCCACCACTCGAGCCGCCGGTATTACCGCGGCGGCTGGCCCCC
GTTCTTGCCCGGCCCTTTCTTCACCTGTTATTTAAACAGATGGACAGCCCGATTTTACGG
GCACTCGGAGTTCCCTTATCGCGGTTTCCCGCATTGTAAAGTTTTCGCGCCTGCTGCGCC
CCGTAGGGCCTGGATTCGTGTCTCAGAATCCATCTCCGGGCTCTTGCTCCCACAACCCGT
ACCGATTACAGGCTTGTTGGGCCGTTACCCCAACAACAACCTAATCGGCCGCATACCCAT
CCTATGGCGGCGGACCTTTCAACTACAGAGCATTCCAGCATCCATAGTCTATGGGGTATT
ATCCCCAGTTTCCCGGGGGTATTCCCCCTCCTAGGGTTGGGTTGGCCACTTGTTTATTGA
GCAGTATAGCCAAGGGCTTGCACCTCTCGACTCGCATGGCTTAATCGAACTCCGATAGCA
GTGGCTCTGGTTGATCCCGGCAGAGCAGGTCGTGGGCAGCAGCGTGAAGACGACGTTTGA
ACTGCGCGACGGCCAGCCCGTGCTCGTGCGCCTGCCGGAAGTGAACTTCAACGACGACAT
GGGCGGCAAGCCCGTCGGCATCAACCAGCACATCGGCCGCCGGCCGATCGCGGCGTTCGG
CAATTCCGACGGCGATTTGCAGATGCTCCAATACACCGGCGCCGGCAGTGGCGCACGGTT
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CTGCCTCTACGTTCACCACGACGACGCCGACCGTGAATACGTCTACGATCGCAAAGACGC
TTTGGCCAAACTCGACAAAGGCCTCGACGAAGCCGCCGCGAAGGGCTGGACCGTCGTCAG
CATGAAGAACGATTGGAAGACCGTTTTCTCTGCCAGGATCAACCAG 
 
W8-2012 
AAAATCCAGGGGAAATTGTTCAAAACACAGGGGCACACCTTACCCTCAAGACGAGAAAA
AACCCGGGATAAATGGGTATTATTCCCCGATAGACCTCGACTGCTGGAATGCATCGAGGC
CGAAAGCTCCGGCGCCTGAGGATGGGTCTGCGGCCTATCAGGTAGTAGTGGGTCTAATGT
ACCTACTAGCCTACGACGGGTACGGGTTGTGAGAGCAAGAGCCCGGAGATGGATTCTGA
GACACGAATCCAGGCCCTACGGGGTGCAGCAAGGCGCGAAAAACTTAACAATGCCGGCAA
CGGCGATATGGGAACCTCGAGTGCCAGGTTATAAATCTGGCTGTCGTGATGCCTAAAAA
GCATTGCATAGCAAGGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGTAACACCGGCGGCT
CGAGTGGTAACCGTTATTATTGGGTCTAAAGGGTCTGTATCCGGCCGGATAAGTCTCTTG
GGAAATCCAGCAGCTCAACTGTTGGGCTTTCTGGAGATACTGTTTGGCTCGAGGCCGGGA
GAGGTGAGAGGTACTTCAGGGGTAGGGGGTGAAACTTGTAATCCTTGATGGACCACCAG
TTGGCGAAATGCGTCTCTCCCTAACGGACTTGACGGCAATGGACTAAAGCTAGGGGCACC
AAACCGAATTAATATCCCCGGTAGTCCTATCCCTAAACCATATTCTCTAGGGTTTGGCCC
CGGGGGAACCGTTGTCCGGTTCCTAAGGAAAACCGTGAAACTAGCCCCCTGGGGGAGTAC
CGCCCGTAATGCTTGAATTTAAAGAAAATTTGTGGGGGGAAGACCTCAACTAGTGGGGG
CCTGGCGTTTTTATTTTAATCTAACCCCCGAAAATTTTTCTTGGGCTCGATAATTATAAT
TTAAAGTCCTGGCTGGAAAAATTTTTCCTGTATTAATTTT 
 
W10-2012 
TTGGGTCTCGCTCGTTGCCTGACTTAACAGGATGCTTCACAGTACGAACTGACGACGGCC
ATGCACCACCTCTCAGCTAATCCGGCAAAGTCTACAGCCTGGCCTTCATATCGCTGTCGG
TCCCGGTAAGATTTCCGGCGTTGAATCCAATTAAACCGCAAGCTCCACCCGTTGTGGTGC
TCCCCCGCCAATTCCTTTAAGTTTCAGCCTTGCGGCCGTACTTCCCAGGTGGCTCGCTTCA
CGGCTTCCCTTACGGCGCCGACCACGGTCGCACCGTGGCCGACACCTAGCGAGTATCGTT
TACGGCTAGGACTACCCGGGTATCTAATCCGGTTCGTGCCCCTAGCTTTCGTCCCTTGCC
GTCAGGTCCGTTCTGGTGAGACGCCTTCGCCACTGGTGGTCCTTCAAGGATTACAAGATT
TCACCCCTACCCCTGAAGTACCTCTCACCTCTCCCGGCCTCGAGCCAGACAGTATCCCCTG
AAAGCCTGACAGTTAAGCTGCCAGATTTCCCAAGAGACTTATCCGGCCGGCTACAGACCC
TTTAGACCCAATAATAGCGGTTACCACTCGAGCCGCCGGTGTTACCGCGGCGGCTGGCAC
CTGTCATGCCCGGCCCTTGCTATATAATGCTTTTTAGGCATTACGACGGCCAGGATTGTA
TCCTGGCACTCGAGGTCCCCTTATCGCCGTTGCCGGGCATTGCAAAGTTTTCGCGCCTGC
TGCACCCCGTAGGGCCTGGATTCGTGTCTCAGAATCCATCTCCGGGCTCTCGCTCTCACG
ACCCGTACCCGTCGTAAGCTAGTAGGTACTTTACACCCTCTACTACCTGAAAGGGCCGCA
AACCCATCCTCAGTCGCCGGAACTTTCGTCCTGGAAGCATTCCAGCAAACCAGAACTATC
GGGTATTATACCCAGTTTCCCGGGTTTATCCCCGTGCTGAGGGTAGGTTGTCCACGTGTT
ACTGAGCAGTACGCCATGTATTGCTACATTCGACTCGCATGGCTTAGTCGAACCTCGATA
GCAGTAACCTCTGCCAGGATCAACCGGAA 
 
W12-2012 
CAACAACAACAAAAACAATTAAACATAAAACAAAAATCATACAACAAATAAACAAAACA
TAAATATAAACTAACCAACTAAGCACAAAACATAAATCAATTCAAATACATCATTGTAT
CACATTTAAACAAACAAACATTAAAAAATTCCACAACATCACGAAATCCCAAGCGACAA
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ATACAAAAAAATTATTAGGCACAAAACCACCAATAATTAATTTACCATTATGAATACGT
CCTCACTGGAAAACTACACATAACATCAAAATAAATTACCAACAATAAAACATTACACT
AGAAAAGCTATAAAAAACGCATTTAACACAAAAGATCCACTAGAATTAAAATTTCAATA
ATTTCCCTAAAGTACAATCATTTTATCGATCCATAGTATGCCAGTTTACCTGAAACGCCT
GATAATAAGCCGGCAGATTTACACCAGAGAATAACAAACCAGCTACGAACGCTATAAGC
CCAGTAATAGTGGCCACCACTCGAGCCGCCGGTATTACCGCGGCGGCTGGCACCGGTCTT
GCCCGGCCCTTTCTTCACCTGTTATTTAAATAGATGGACAGCCCGATTTTACGGGCACTC
GGAGTTCCCTTATCACGGTTTCCCGCATNGTAAAGTTTTCGCGCCTGCTGCGCCCCGTAG
GGCCTGGATTCGTGTCTCAGAATCCATCTCCGGGCTCTTGCTCCCACAACCCGTACCGAT
TACAGGCTTGTTGGGCCGTTACCCCAACAACAACCTAATCGGCCGCAGACCCATCCTATG
GCGGCGGACCTTTCAACTACAGAGCATTCCAGCATCCATAGTCTATGGGGTATTATCCCC
AGTTTCCCGGGGTTATCCCCCTCCATAGGTTAGGTTGTCCACGTGTTACTGAGCAGTATG
TCGAGGTCTTGCACCTCTCGACTCGCATGGCTTAATCGAACTCCGATAGCAGTGGCCTCT
GCCGGGATCAACCGGAA 
 
W15-2012 
TCCGGTTGATCCTGGCGGAGGCCACTGCTATCAGAGTTCGATTAAGCCATGCGAGTCGAG
AGGTGCAAGACCTCGGCATACTGCTCAGTAACACGTGGACAACCTAACCTACAGAGGGGG
ATAACCCCGGGGAAACTGGGATTAATTCCCCATAGACTATGGATGCTGGAATGCTTCGTA
GTTGAAAGGTCCGCCACTGTAGGATGGGTCTGCGGCCGATTAGGTTGTTGTTGGGGTAAC
GGCCCAACAAGCCTGTAATCGGTACGGGTTGTGGGAGCAAGAGCCCGGAGATGGATTCTG
AGACACGAATCCAGGCCCTACGGGGCGCAGCAGGCGCGAAAACTTTGCAATGCGGGAAAC
CGTGACAAGGGAACTCTGAGTGCCCGTTAAATCGGGCTGTCCATCGGTTTAAATAACCGG
TGAAGAAAGGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGTAATACCGGCGGCTCGAGTG
GTGGCCACTATTACTGGGCTTAAAGCGTTCGTAGCTGGTTTGTTAAGTCTCTGGGGAAAT
CTGCCGGCTCAACCGGCAGGCGTTCCAGGGATACTGGCAGACTAGGGGCCGGGAGAGGTG
AGGGGTACTCCAGGGGTAGGAGTGAAATCCTGTAATCCTTGGGGGACCACCTGTGGCGA
AGGCGCCTCACCAGAACGGCTCCGACAGTGAGGGACGAAAGCTGGGGGAGCAAACCGGAT
TAGATACCCGGGTAGTCCCAGCTGTAAACGATGTGCGTTAGGTGTATCGGTGACCACGAG
TCACCGAGGTGCCGAAGAAAAATCGTGAAACGTGCCGGCCTGGGAAGTACGGTCGCAAG
GCTTGAAACTTAAAGGAATTGGCGGGGGAGCACCCCACCAGGGGAACCCGGCGGTTAATC
GGGATTCACGCCCGAAAATCTCACCGGAAAAGAAAGCTGGATGGAAAGTCGGGTTGAAA
AATCTACTTTGATAACTGAAAAGGAGGTGGATGGGCCGTTCTC 
 
W22-2012 
TTGTTCAAGTAACACCGGGATTAACCTGCCCTTGGGTTTGGGGAAAACCCCGGGAAACTG
GGACTAATACCGGATAGATTAAAAATAACGGAATGTTTTATGATCCAAAATTCCGGTGC
CCAAGGAGGGTTTTGCGCCTATCCAGGTAGTATTGGGTGTAACGTACTTACTAGCCTACG
ACGGTTAAGGGTTGTGAGAGCAAGAGCCCTGAGATGGATTTTGACACATGAATCCAGGC
CTTACGGGGTGCAGCAGGCGCGAAAACTTTACACTGCGGGAAACCGCGATAAGGGGACCC
CGAGTGCCAGCACCTAGTGCTGGCTGTCCAGCTGTCCAAATAACAACTGTTAGCAAGGGC
CGGGCAAGACCGGTGCCAGCCGCCGCGGTAACACCGGCGGCCCGAGTGGTAGCCGCTATT
ATTGGGTTTAAAGGGTCCGTAGCCGGCCTATTAAGTCTCTTGGGAAATCTGGCGACTCAA
TCGTCAGTCGTCCAAGAGATACTGGTAGGCTTGGGACCGGGAGAGGTGGGAGGTACTCC
AGGGGTAGGGGTGAAATCCCGTAATCCTTGGGGGACCACCGATGGCGAAGGCATCCCACC
AGAACGGGTCCGACGGTGGGGGACGAAAGCTGGGGGCACGAACCGGATTAGATACCTGG
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GTAGTCCCAGCCGTAAACGATGCTCGCTAGGTGTCAGGTGCGGTGGGACCGCAACTGGGG
GCGCAATGAAAACTTTGAAGCGAGTCACCCTGGGAAATACGGTCGCAAGGGTGGAAACT
TAAAGGAATTTGCGGGGGGAACACTACCACGGGGTGGAGCCGGCGGTTTAATTGGATTT
CAACGCCGGAAAGCTTTACCGGGTCCAAAAGCAAAATGAAAGGCAAACTTAAAAATTTT
TCCAAATTTTCCTAAAAGGGGGTGGCTTGGGGCCTCTTTCCTTTT 
 
W24-2012 
TTGGGTCTCGCTCGTTGCCTGACTTAACAGGATGCTTCACAGTACGAACTGACGACGGCC
ATGCACCACCTCTCAGCTAATCCGGCAAAGTCTTCAGCTTGGCCTTCATATTGCTGTCGG
TCCCGGTAAGATTTCCGGCGTTGAATCCAATTAAACCGCAAGCTCCACCCGTTGTGGTGC
TCCCCCGCCAATTCCTTTAAGTTTCAGCCTTGCGGCCGTACTTCCCAGGTGGCTCGCTTCA
CGGCTTCCCTACGGCACCGACCACGGTCGCACCGTGGCCGACACCTAGCGAGTATCGTTT
ACGGCTAGGACTACCCGGGTATCTAATCCGGTTCGTGCCCCTAGCTTTCGTCCCTTGCCG
TCAGGTCCGTTCTGGTGAGACGCCTTCGCCACTGGTGGTCCTTCAAGGATTACAAGATTC
CACCCCTACCCCTGAAGTACCTCTCACCTCTCCCGGCCTCGAGCCAGACAGTATCTCCTGA
AAGCCTGACAGTTAAGCTGCCAGATTTCCCAAGAGACTTATCCGGCCGGCTACAGACCCT
TTAGACCCAATAATAACGGTTACCACTCGGGCCGCCGGTGTTACCGCGGCGGCTGGCACC
GGTCTTGCCCGGCCCTTGCTATGCAATGCTTTTTAGGCATCACGACAGCCAGATTTGTAA
CCTGGCACTCGAGGTTCCCTTATCGCTGTTTCCAGCATTGTAAAGTTTTCGCGCCTGCTG
CACCCCGTAGGGCCTGGATTCGTGTCTTAGAATCCATCTCCGGGCTCTTGCTCTCACAAC
CCGTACCCGTCGTAGGCTAGTAGGTACGCTACACCCACTACTACCTGATAGGCCGCAAAC
CCATCCTTGGGCACCGGGGCTTTCGACCTCGATGCATTCCAGCATTCGAGGACTATCGGG
TATTATACCCAGTTTCCCGGGTTTATCCCCATCCCAAGGGTAGGTTGTCCACGTGTTACT
GAGCAGTACGCCATGTATTGCTACATTCGACTCGCATGGCTTAGTCGAACCTCGATAGCG
GTAACCTCTGCCGGGATCAACCGGAA 
 
W25-2012 
GGCGATTGGGCCGACGTCGCATGCTCCCGGCCGCCATGGCGGCCGCGGGAATTCGATCCC
TTTCTCGCTCGTTGCCTGACTTAACAGGATGCTTCACAGTACGAACTGACGACGGCCATG
CACCACCTCTCAGCTAATCCGGCAAGGTCTTCAGCCTGGCCTTCATATTGCTGTCGATCCC
GGTAAGCTTCCCGGCGTTGAATCCAATTAAACCGCAGGCTCCACCCGTTGTAGTGCTCCC
CCGCCAATTCCTTTAAGTTTCAGCCTTGCGGCCGTACTTCCCAGGTGGCTCGCTTCACGGC
TTCCCTACGGCACCGACCACGGTCGCACCGTGGCCGACACCTAGCGAAGTATCGTTTACG
GCTAGGAACTACCCGGGTATCTAATCCGGTTCGTGCCCCTAGCTTTCGTCCCTTGCCGTC
AGGTCCGTTCTGGTGAGACGCCTTCGCCACTGGTGGTCATTCAAGGATTACAAGATTTCA
CCCCTACCCCTGAAGTACCTCTCACCTCTCCCGGCCTCGAGCCGAACAGTATCTTCTGAAA
GCCCAACTGTTGAGCAGCTGGATTTCCCAAAAGACTTATCCGGCCGGCTACAGACCCTTT
AGACCCAATGATAGCGGTTACCACTCGAGCCGCCGGTGTTACCGCGGCGGCTGGCACCGG
TCTTGCCCGGCCCTTGCTATGCAATGCTTTTTAGGCATCACGACAGCCAAGATTGTATCC
TGGCACTCGAGGTCCCCTTTATCGCTGTTGCCAGCATTGTAAAGTTTTCGCGCCTGCTGC
ACCCCGTAGGGCCTGGATTCGTGTCTCAAAATCCATCTCCGGGCTCTTGCTCTCACAACC
CGTACCCGTCGTAGGCTAGTAGGTACGCTACACCCACTACTACCTGATAGGCCGCAGACC
CATCCTTGGGCACCGGAGCTTTCGATCTCGATGCGTTCCAGCTTCCGAGATCTATCGGGT
ATTATACCCAGTTTCCCGGGTTTATCCCCGTCCCAAGGGTAGGTTGTCCACGTGTTACTG
AGCAGTACGCCATGTATTGCTACATTCGACTCGCATGGCTTAGTCGAACCTCGATAGCAG
TAACCTCCGCCAGGATCAACCGGAA 
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W28-2012 
TTAAGGTTAGTCAAAGTAGATTTTTTCGCCCGAACTTTCCTCCCAGCTTTTCTTTCCGGT
GGAAATTCCCGGCGGTGAGTCCGATTAAACCGCCAGGCTCCACCCTGTTGGGTGCTCCCC
CGCCTATTCCTTTAAGTTTTCAGCCTTGCGACCGTACTTCCCCAGGCGGCACGTTTCACG
ATTTCTCTTCGGCACCTCGGTGACTCGTGGTCACCGATACACCTAACGCGCATCGTTTAC
AGCTGGGACTACCCGGGTATCTAATCCGGTTTGCTCCCCCAGCTTTTGTCCCTCACTGTA
GGAGCCGTTCTGGTGAGGCGCCTTCGCCACAGGTGGTCCCCCAAGGATTACAGGATTTCA
CTCCTACCCCTGGAGTACCCCTCACCTCTCCCGGTCCCTAGTCTGCCAGTATCCCTGGAAC
GCCTGCCGGTTGAGCCGGCAGATTTCCCCAGAGACTTAACAAACCAGCTACGAACGCTTT
AAGCCCAGTAATAGTGGCCACCACTCGAGCCGCCGGTATTACCGCGGCGGCTGGCACCGG
TCTTGCCCGGCCCTTTCTTCACCTGTTATTTAAACAGATGGACAGCCCGATTTTACGGGC
ACTCGGAGTTCCCTTATCACGGTTTCCCGCATTGTAAAGTTTTCGCGCCTGCTGCGCCCC
GTAGGGCCTGGATTCGTGTCTCAGAATCCATCTCCGGGCTCTTGCTCCCACACCCCGAAC
CGAATTAAGGGTTGTTGGGGCGTTTACCCCAACAACAACCTAATCGGCCGCAGACCCATC
CTATGGCGGCGGACCTTTCAACTACAGAGCGTTCCAGCATCCATAGTCTATGGGGTATTA
TCCCCAGTTTCCCGGGGTTATCCCCCTCTGGAGGGGGGGTTGGCCCCCGGTAATGGAAAA
TATTCCGAAGGTTTTGGCCCTCTTCGCTTTGAAGGGGTTAATTAAAATTCTAAAAAAAG
GGGGCTTCG 
 
W29-2012 
TCCGGTTGATCCTGGCGGAGGTTACTGCTATCGAGGTTCGACTAAGCCATGTGAGTCGAA
TGTAGCAATACATGGCGAACTGCTCAGTAACACGTGGACAACCTACCCTTAGGTCAGGGA
TAACCCCGGGAAACTGGGAATAATACCTGATATGGCGCGAAGGCTGGAATGCATCGCGC
AAGAAAGCTCCGGTGCCTAAGGATGGGTCTGCGGCCTATCAGGGTAGTAGTGGGTGTAA
CGTACCTACTAGCCTACGACGGGTACGGGTTGTGAGAGCAAGAGCCCGGAGATGGATTCT
GAGACACGAATCCAGGCCCTACGGGGTGCAGCAGGCGCGAAAACTTTACAATGCCGGCAA
CGGCGATAAGGGAACCTCGAGTGCCAGGATACAATCCTGGCTGTCGTAATGCCTAAAAAG
CATTTCATAGCAAGGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGTAACACCGGCGGCTC
GAGTGGTAACCGTTATTATTGGGTCTAAAGGGTCTGTAGCCGGCTGGATAAGTCTCTTG
GGAAATCCGGCAGCTCAACTGTCGGGCTTTCAGGAGATACTGTCCGGCTCGAGACCGGGA
GTGGTGATAGGTACTTCAGGGGTAGGGGTGAAATCTTGTAATCCTTGAAGGACCACCAG
TGGCGAAGGCGTCTCACCAGTGCGGATCTGACGGCATGGGACGAAAGCTAGGGGCACGA
ACTGGATTAGATACCCGGGTAGTCCTAGCCGTAAACGATACTCGCTAGGTGTCGGCCACG
GTGCGACCGTGGTCGGTGCCGTAGGGAAGCCGTGAACCGAGCCACCTGGGAAGTACGGGC
CCCAAGGCTGAAACTTAAAGGAATTGGCGGGGGAGCACTACAACGGGTGGGAGCTTGCG
GGTTAATTGGATTCAACGCCCGGAAATCTCACCGGAACCGAAAGCAAAATGAAGGGCAG
GCTGAAAAACCTTGCCGAATTAACTAAAAGGGGGGGGAT 
 
W31-2012 
GGACATAACTCCTATAGGGGCGAAATTGGGCCCGACGTCGCATGCTCCCGGCCGCCATGG
CGGCCGCGGGAATTCGATCTGGTTGATCCCGGCGGAGGTTACTGCTATCGAGGTTCGACT
AAGCCATGCGAGTCGAATGTAGCAATACATGGCGTACTGCTCAGTAACACGTGGACAACC
TACCCTTGGGACGGGGATAAACCCGGGAAAACTGGGTATAATACCCGGATAGTTCTTGG
AAGCTGGAATGCATTGAGATTGAAAGCTTCGGTGGCCAAGGAAGGGTTCTGCGGCCTTT
CAGGTAGTAGTGGGTGTAGGGTCCTTATTAGCCTACGACGGGTACGGGTTGTGAGAGCA



85 
 

AGAGCCCGGAGATGGATTCTGAGACACGAATCCAGGCCCTACGGGGTGCAGCAGGCGCGA
AAACTTTACAATGCTGGAAACAGCGATAAGGGGACCTCGAGTGCCAGGTTACAAATCTG
GCTGTCGTAATGCCTAAAAAGCATTTCATAGCAAGGGCCGGGCAAGACCGGTGCCTGCCG
CCGCGGTAACACCGGCGGCTCGAGTGGTAACCGTTATTATTGGGTCTAAAGGGTCTGTAG
CCGGCCGGATAAGTCTCTTGGGAAATCTGGCAGCTTAACTGTCAGGCTTTCAGGGGATAC
TGTCTGGCTCGAGGCCGGGAGAGGTGAGAGGTACTTCAAGGGTAGGGGTGAAATCTTGT
AATCCTTGAAGGACCTCCAGTGGCGAAGGCGTCTCACCAGAACGGACTTGACGGCAAGGG
ACGAAAGCTAGGGGCACGAACCGGATTAGAAACCCGGGTAGTCCTAGCCGTAAACGAAA
CTCGCTAGGTGTCGGCCACGGTGCGACCGTGGTTCGGGCCGTAAGGAAACCCTGAAGCAA
GCCACCTGGGAAGTACGGCCGCAAGGGTTGAACTTTAAAGGAATGGGCGGGGGAACACC
CCAACGGGTGGAGCTTGGGGTTTTATTGGGATTCAACCCCGGAAAACTTTACCGGGACCC
AAAAGCAATATAAAGGGCCAGCTTAAAAAATTTTCCCCGAATAAACTTAGAAGGGGGGT
GCTGGGCCC 
 
W32-2012 
TTGGGTCTCGCTCGTTGCCTGACTTAACAGGATGCTTCACAGTACGAACTGACGACGGCC
ATGCACCACCTCTCAGCTAATCCGGCAAAGTCTTCAGCCTGGCCTTCATATTGCTGTCGG
TCCCGGTAAGATTTCCGGCGTTGAATCCAATTAAACCGCAAGCTCCACCCGTTGTGGTGC
TCCCCCGCCAATTCCTTTAAGTTTCAGCCTTGCGGCCGTACTTCCCAGGTGGCTCGCTTCA
CGGCTTCCCTACGGGCACCGACCACGGTCGCACCGTGGCCGACACCTAGCGAGTATCGTT
TACGGCTAGGACTACCCGGGTATTTAATCCGGTTCGTGCCCCTAGCTTTCGTCCCTTGCC
CGTCAGGTCCGGTTCTGGTGAGACGCCTTCGCCACTGGTGGTCCTTCAAGGATTACAAGA
TTTCACCCCTACCCCTGAAGTACCTCTCACCTCTCCCGGCCTCGAGCCAGACAGTATCCCC
TGAAAGCCTGACAGTTAAGCTGCCAGATTTCCCAAGAGACTTATCCGGCCGGCTACAGAC
CCTTTAGACCCAATAATAACGGTTACCACCCGAGCCGCCGGTGTTACCGCGGCGGCTGGC
ACCGGTCTTGCCCGGCCCTTGCTATGAAATGCTTTTTAGGCATTACGACAGCCAGATTTG
TAACCTGGCACTCGAGGTCCCCTTATCGCCGTTGCCGGCATTGTAAAGTTTTCGCGCCTG
CTGCACCCCGTAGGGCCTGGATTCGTGTCTCAGAATCCATCTCCGGGCTCTTGCTCTCAC
AACCCGTACCCGTCGTAGGCTAGTAGGTACGCTACACCCACTACTACCTGATAGGCCGCA
GACCCATCCTTGGGCACCGGAGCTTTCGATCTCGGTACATTCCAGCTTCCGAGATCTATC
GGGTATTACACCCAGTTTCCCGGGTTTATCCCCGTCCCAAGGGTAGGTTGTCCACGTGTT
ACTGAGCAGTACGCCATGTATTGCTACATTCGACTCGCATGGCTTAGTCGAACCTCGATA
GCAGTGACCTCCGCCGGGATCAACCAGAA 
 
W34-2012 
TGTGCTATTTTGGTTTGGATTAAACCCTTCCAAGTCCGGTAGCAAGCCCGGCGGAATGCT
CAGTAACACGTCGATAATCTGCCCTTAAGTCTGGGATACCCTCGGGAAACTGAGGTTAAT
ACCGGATGAGAAAACCATGCTGGAATGCAGGTTTTCTGAAAGGTAACGCTTAAGGATGA
GTCGGCGGCGGATTAGGTTGTTGGCGAGGTAAAGGCTCACCAAGCCGAAAATCTGTAGG
GGCTTTGACAGAAGTAGCCTCGAGAAGGGCACTGAGACTCTGGCCCTAGCCCTACGGGGT
GCAGCAGGCGCGAAAACTTTGCAATGCACGCAAGTGTGACAAGGGAATCCAAAGTGCTT
AGTTTACTAAGCTTTTGCCAAGAGCAAACATCTTGGAGAATAAGTGGTGGGTAAGACTG
GTGCCAGCCGCCGCGGTAACCCCAGCGCCACAAGTGGTAATCTCGTTTATTGGGCCTAAA
GCGTCCGTAGCTGATCAAGTAAATCTCTTGTGGAATTGTTGGGCTTAACCTAACAGCGGG
CAGGAGAGACTGCTTGACTAGGGACCGGGAGGAGTCAGAGGTATGCTAGGGGGAGCGGT
AAAATGTTATAATCCCTAGTAGACCACCTGTGGCGAAGGCGTCTGACTAGAACGGGTCCG
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ACAGTGAGGGACGAAAGCCAGGGGAGCAAACCGGATTAGATACCCGAGTAGTCCTGGCC
ATAAACGCTGCGAACTAGGTGTTGCATATTCTTCGTGAATGGGCAGTGTCGAAGCGAAA
GTGTTAATTCTCCGCCTGGGAAGTACGGTCGCAAGACTGAAACTTTAAGGAATTGGCGG
GGGAGCACTTACAAGGGGTGCGGCGTGCGGTTTAATCTAACCCTACGCAGAGCATCTCAT
CCAGAGGCGACCGGCAAATGAAGGGTCATCCTAAAGGGCTTACTTGAGAAACCAAAAGG
TATGGAATGGGCCGCCTCCCGCTTG 
 
W35-2012 
TTGGGTCTCGCTCGTTGCCTGACTTAACAGGATGCTTTACAGTACGAACTGACGACGGCC
ATGCACCACCTCTCAGCTAATCCGGCAAAGTCTTCAGCCTGGCCTTCATATTGCTGTCGG
TCCCGGTAAGATTTCCCGGCGTTGAATCCAATTAAACCGCAAGCTCCACCCGTTGTGGTG
CTCCCCCGCCAATTCCTTTAAGTTTCAGCCTTGCGGCCGTACTTCCCAGGTGGCTCGCTTC
ACGGCTTCCCTACGGCACCGACCACGGTCGCACCGTGGCCGACACCTAGCGAGTATCGTT
TACGGCTAGGACTACCCGGGTATCTAATCCGGTTCGTGCCCCCAGCTTTCGTCCCTCACT
GTCGGAGCCGTTCTGGTGAGGCGCCTTCGCCACAGGTGGTCCCCCAAGGATTACAGGATT
TCACTCCTACCCCTGGAGTACCCCTCACCTCTCCCGGTCCCTAGTCTGCCAGTATCCCTGG
AACGCCTGCCGGTTGAGCCGGCAGATTTCCCCAGAGACTTAACAAACCAGCTACGAACGC
TTTAAGCCCAGTAATAGTAGCCACCACTCGAGCCGCCGGTATTACCGCGGCGGCTGGCAC
CGGTCTTGCCCGGCCCTTTCTTCACCTGTTATTTAAACAGATGGACAGCCCGATTTTACG
GGCACTCGGAGTTCCCTTATCACGGTTTCCCGCATTGTGAAGTTTTCGCGCCTGCTGCGC
CCCGTAGGGCCTGGATTCGTGTCTCAGAAATCCATCTCCGGGCTCTTGCTCCCACAACCC
GTACCGATTACAGGCTTGTTGGGCCGTTACCCCAACAACAACCTAATCGGCCGCAGACCC
ATCCTATGGCGGCGGACCTTTCAACTACAGAGCATTTCAGCATCCATAGTCTAATGGGGT
ATTATCCCCAGTTTCCCGGGGTAATCCCCCCTCATAAGGTTAGGTTGTCCACGTGTTACT
GAACAAAATGCCGAGGTCTTTGCCCCTTCCGACTTCGCAAGGGTTTAATCCAA 
 
W36-2012 
ACAAATCCATGGGGTATTGTTCAGTAAACAGTGGAACACCTACCCCTTGGGAGGGGGAT
AACCCGGGAAAACGGGGTATAATACCCGATAGATCTCCAAAGCTGGAATGCATCGAGAT
CGAAAGCTCCGGTGCCCAAGGATGGGTCTGCGGCCTATCAGGTAGTAGTGGGTGTAGCGT
ACCTACTAGCCTACGACGGGTACGGGCTGTGAGAGCAAGAGCCCGGAGATGGATTCTGAG
ACACGAATCCAGGCCCTACGGGGTGCAGCAGGCGCGAAAACTTTACAATGCTGGAAACAG
CGATAAGGGGACCTCGAGTGCCAGGTTACAAATCTGGCTGTCGTAATGCCTAAAAAGCA
TTTCATAGCAAGGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGTAACACCGGCGGCTCGA
GTGGTAACCGTTATTATTGGGTCTAAAGGGTCTGTAGCCGGCCGGATAAGTCTCTTGAG
AAATCTGGCAGCTTAACTGTCAGGCTATCAGGGGATACTGTCTGGCTCGAGGCCGGGAGA
GGTGAGAGGTACTTCAGGGGTAGGGGTGAAATCTTGTAATCCTTGAAGGACCACCAGTG
GCGAAGGCGTCTCACCAGAACGGACCTGACGGCAAGGGACGAAAGCTAGGGGCACGAACC
GGATTAGATACCCGGGTAGTCCTAGCCGTAAACGATACTCGCTAGGTGTCGGCCACGGTG
CGACCGTGGTCTGTGCCGTAGGGAAGCCGTGAAGCGAGGCACCTGGGGAATACGGCCGCC
AGGCTGAAACTTAAAGGAAATTGGCGGGGGAGCACCACCACGGGTGGAGCTTGGCGGTT
TATTGGATTCAACGCCCGGAAACTTACTGGGAACGGACAGCAATATTAAAGGCCAGGCT
GAAGAATTTTGCCGGAATAACTGAAAGGGGGGGGATGGGCCGTCCTTCAGTTCTTACTG 
 
W37-2012 
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CTTCTTTTCAAGAAATTCGGTAAAGATCATTAACCAAGACCCTTCATAGTGCCGTCGAGT
CCGGTAAGCTTTCCGGCGGTGGATCCAATTGAAACCGCAGGCTCCACCCGTTGTAGTGTT
CCCCCGCCAATTCCTTAAAGTTTCAGCCTTGCGACCGTACTTCCCAGGTGACTCGCTTCA
AGTTTTCACTGCGGGCACCAGGTGCGGTCGCACCGCACCCTGACACCTAGCGAGCATCGT
TTACAGCTGGGACTACCCGGGTATCTAATCCGGTTCGTGCCCCCAGCTTTCGTCCCTCACC
GTCGGACCCGTTCTGGTGGGATGCCTTCGCCATCGGTGGTCCCCCAAGGATTACGAGATT
TCACCCCTACCCCTGGAGTACCTCCCACCTCTCCCGGTCCCAAGCCTACCAGTATCTTTTG
GACGCCTGACGATTGAGCCGCCAGATTTCCCAAAAGACTTAATAAGCCGGCTACGGACCC
TTTAAACCCAATAATAGCGGCTACCACTCGGGCCGCCGGTGTTACCGCGGCGGCTGGCAC
CGGTCTTGCCCGACCCTTGCTAACAGTTGTTATTTGGACAACTGGACAGCCAGCACTTGG
TGCTGGCACTCGGGGTCCCCTTATCGCGGTTTCCCGCAGTGTAAAGTTTTCGCGCCTGCT
GCACCCCGTAGGGCCTGGATTCATGTCTCAGAATCCATCTCAGGGATCTTGCTCTCACAA
CCCTTACCCGTCGCTGGCTAGTAGGTACGTTACACCCACTACTACCTGATAGGCCGCAGA
CCCATCCTTGGGCACCGGAGTTTTAAACCAGAGAACATTCCAGTATCTCTGATCTATCCG
GTATTAGTCCCAGTTTCCCGGGGTTATCCCGGACCCAAGGGCAGGTTATCCGCGTGTTAC
TGAGCAGTACACCGAGGGCTTACCCCTCTCAACTCGCATGGCTTAGTCGGACCCCGATAG
CAGTAACCTCTGCCAGGATCAAACAGAA 
 
W38-2012 
GGGCGATTGGGCCCGACGTCGCATGCTCCCGGCCGCCATGGCGGCCGCGGGAATTCGATC
CCCCTTTAACGCTCGTTGCCTGACTTAACAGGATGCTTCACAGTACCAACTGACGACGGC
CATGCACCTCCTCTCAGCTGGTCAAGCAAAGTCTTCAGCCTGGCTATCACTCCGCTGTCT
TACCCGGTGAGCTTCCCGGCGTTGAGTCCAATTAAACCGCAGGCTCCCACCCGTTGTGGT
GCTCCCCCGCCCAATTCCTTTAAGTTTCAGCCTTGCGACCGTACTTCCCAGGCGGGCACGT
TTTCACGGTTTCCCTTCGGCACCTCGGTAAACTCGTAGTCAACCGATACACAAAACGCGC
ATCGTTACAAGCTGGGACTACCCGGGTATATAATCCGGTTTGCTCCCCCAGCTTTCGTCC
CTCACCGTCGGAGTCGTTCTGGTGAGACGCCTTCGCCACAGGTGGTCCCCCAAGGATTAC
AGGATTTCACTCCTACCCCTAGAGTACCTCTCACCTCCCCCGATCCCTAGATTGCCAGTAT
CCCCTGAACGCCCAACGGTTGAGCCGTTGGATTTCCCAGGAGACTTAACAACCCGGCTAC
GGACGCTTTAAGCCCAGTAATAGTGGCCACCACTCGTGCCGCCGGTATTACCGCGGCGGC
TGGCACCGGTTTTGCCCGGCCCTTTCTCCAGATGCTTTTTAAAACCTTGAACAATCTGCA
TGTACAGGCACTCGGGGTCCCCTTATCACGGTTTCCCGCATTGTAAAGTTTTCGCGCCTG
CTGCGCCCCGTAGGGCCTGGATTCATGTCTCAGAATCCATCTCTGGGCTCTTGCTCCCAC
AACCCGTACCGATGATCGGCTTGTTGGTTCTTTTCTCCTAATTATTCTAATTTGTTCTTC
GTCTAACCCTATTTGATTCTTAAATTTCTTATATTTTTCTTTTATTTTCTTTGTTTATTG
TATTTTATTCCTTTTTTTCTTTGTTTCTATTAATTATTTTTTATTTTCTTTTTTATTTTA
TAAATGTTATTATTTTTCTTCCATATTTTTTCATTTT 
 
W40-2012 
CTCAAATATTCCCGCCAAGTTTTTTCACCTTGGCCTTCAAACAACTTTTTTCCCGGTAAA
GTTTCCCGGCGTTGAGTCCAAATAAACCCGCAGGCTCCACCCGTTGGGTGCTTCCCCGGC
CCATTCCTTTAAGTTTCAACCTTGCGGTCGTACTTCCCAAGTGGCTCGCTTCACGGTTTC
CTTACGCACCCACAACAGTTCACGACTGTTGTGACACCTAGCGAGCATCGTTTACGGCTA
GGACTACCCGGGTATCTAATCCGGTTCGTGCCCCTAGCTTTCGTCCCTCACCGTCGGACCT
GCTCTGGTAGGACGCCTTCGCCACCGGTGGTCCCCAAAGGATTACAGGATTTCACTCCCA
CCCCCTGAGTACCTCCTACCTCTCCCAGTCCCAAGCAATGTAGTACCCCCCGGACGACCAA
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CGGTTAAGCCGCTGGATTTCCCGAGAGACTTGCAAAGCCGGCTACGGACCCTTTAGACTC
AATAATATCGGCCACCACTCGAGCCGCCGGTATTACCGCGGCGGCTGGCACCGGTCTTGC
CCGGCCCTTGCTAACCCCCGCTTTTTAGGCGGGGGGACAGGCCCCCAATATGAGGACCAC
TCGATGTTCCCCTATCGCAGTTGCCTGCATTGTAGAGTTTTCGCGCCTGCTGCGCCCCGT
AGGGCCTGGATTCGTGTCTCAGAATCCATTCTCCGGGCTCTTTGCTCCCACAACCCGTAC
TGATTACAGGCTTGACGGTACGTTACACCGGCAACAACCTAATCAGCCGCAGACCCATCC
AAAGGCCCCGGAGGTTTCAACCAAACAGCCTTCCAGCACGCTTGGCCTATCCGGTATTAT
CCCCAGTTTTCCGGGGTTTTCCCGGACCCCTGGGGTAGGTTGGCCCCTTGTTTATGAACA
AT 
 
W41-2012 
AAAAGGGCCAAGACCTTGGGCAAAATTTCTCAAAACCCACGGGGACCTTTTTCCCCGAAA
GAAGAGAATAATTCCCGAAAAATGGGGGTAATTGTTTTTTATTCCGGGATGACTGGAAA
TGTTATCCGGAAGAAAAGTTCGGCCGCTTCAGGATGAGTCTGTGGCCGATTAGGTAGTT
GTTGGGGTAAAACCCCAACAAGCCTGTATTCGGTACGGGTTGTGGGAGCAAGAGCCCGG
AGATGGATTCTGAGACACGAATCCAGGCCTTCCGGGGCGCAGCAGGCGCGAAAACTTTAC
AATGCGGGCAACCGTGATAAGGAAACCCCGAGTGCCAGCACAGGCTGGCTGTCCGCCAGT
GTAAAAAACTGGTGAAGAAAGGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGTAATACC
GGCGGCTCGAGTGGTGGCCGCTTTTACTGGGCTTAAAGGGTCCGTAGCTGGATTCACAAG
TCCCTTGAGATATCTATCGGCTTAACTGATAGGCGTTCAGGGGATACTGTGGTTCTAGGG
ACCGGGAGAGGTAAGAGGTACTGCCGGGGTAGGAGTGAAATCCTGTAATCCCGGTGGGA
CGACCTATAGCGAAGGCATCTTACCAGAACGGCTCCGACAGTGAGGGACGAAAGCTGGGG
GAGCAAACCGGATTAGATACCCGGGTAGTCCCAGCTGTAAACGATGCGCGTTAGGTGTGT
CAGTGACCACGTGTCACTGATGTGCCGAAGGGAAACCGTGAAACGCGCCGCCTGGGGAGT
ACGGTCGCAAGGCTGAAACTTAAAGGAATTGGCGGGGGAGCACCACAACGGGTGGAGCC
TGCGGTTTAATCGGACTCAACGCCGGAAATCTCACCGGATGAGACAGCTTAATGGTAGTT
GGGGAGAAGAATCCACTTGAAAAACTGAAAGAAGGGGAGGGGCCTCT 
 
W44-2012 
AGAACGGCCATGCCCCTCCTTTTTAAGATAATAAAGAAAATTTTTCAACCCCGAATTTCC
ATTAAGCTTTTTTATTTGGTGAGTTTCCCGGGGGTTGAGTCCGATAAAACCCCCAGGCTC
CACCCGGTGGGGTGTTCCCCCCCCAAATCCTTTAAGTTTCAGCCTTGCGACCGTACTTCCC
AGGCGGCACGTTTCACGATTTTTCTTCGGCCCCTCGGTGACTCGGGGTCACCGATACACC
TAACGCGCATCGTTTACAGCTGGGACTACCCGGGTATCTAATCCGGTTTGCTCCCCCAGC
TTTCGTCCCTCACTGTCGGAGCCGTTCTGGTGAGACGCCTTCGCCACAGGTGGTCCCCCA
AGGATTACAGGATTTCACTCCTACCCCTGGAGTACCTCTCACCTCTCCCGGTCCTTAGTC
TGCCAGTATCCCTGAGACGCCTTCCGGTTAAGCCGGAAGATTTCCCCAGAGACTTAACAA
ACCAGCAACGAACGCTTTAAGCCCAGTAATAGTGGCCACCACTCGAGCCGCCGGTATTAC
CGCGGCGGCTGGCACCGGTCTTGCCCGGCCCTTTCTTCACCGGTTATTTAAACCGATGGA
CAGCCCGATTTAACGGGCACTCAGAGTTCCCTTGTCACGGTTTCCCGCATTGCAAAGTTT
TCGCGCCTGCTGCGCCCCGTAGGGCCTGGATTCGTGTCTCAGAATCCATCTCCGGGCTCTT
GCTCCCACAACCCGTACCGATTACAGGCTTGTTGGGCCGTTACCCCCAAAACAACCTAAA
TCGGCCGCAGACCCATCCTATGGGGGGGGGACCTTTCAACTACAGAGCATTCCAGCATCC
ATAGTCTATGGGGGGATTATCCCCAGTTTCCCCGGGGTCATCCCCCTCCATAGGTTAGGT
TGTCCACGTGTTACTGAGCAGTATGCCGAGGTCTTGCACCTCTCGACTCGCATGGCTTAA
TCGAACTCCGATAGCAGTGGCCTCCGCCGGGATCAACCGGA 
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W50-2012 
ATTGTTCAGTTACAACGTGGACAACCTTCCCCTGGAGAGGGGGAAAAACCCGGGAAAAC
TGGGTTTAATACCCGGTAAATTCTGGAATGGTGGAATGCTTCGAGGTGAAAGTTCCGGG
CGCCCAAGGATGGTTTTGCGGCCTATCAGGTAGTAGTGGGTGTAGCGTCCTTACTAGCTT
ACGACGGGTACGGGTTGTGAGAGCAAGAGCCGGAAGATGGATTTTGAGGCACGAATCCA
GGCCCTACGGGGTGCAGCAGGCGCGAAAACTTTACAATGCTGGAAACAGCGTTAAGGGG
ACCTCGAGTGCCAGGTTACAAATCTGGCTGTCGTAATGCCTAAAAAGCATTTCATAGCAA
GGGCCGGGCAAGACCGGTGCCAGCCGCCGCGGTAACACCGGCGGCTCGAGTGGTAACCGT
TATTATTGGGTCTAAAGGGTCTGTAGCCGGCCGGATAAGTCTCTTGGGAAATCTGGCAGC
TTAACTGTCAGGCTTTCAGGGGATACTGTCTGGCTCGAGGCCGGGAGAGGTGAGAGGTA
CTTCAGGGGTAGGGGTGAAATCTTGTAATCCTTGAAGGACCACCAGTGGCGAAGGCGTCT
CACCAGAACGGACCTGACGGCAGGGGACGAAAGCTAGGGGCACGAACCGGATTAGATAC
CCGGGTAGTCCTAGCCGTAAACGATACTCGCTAGGTGTCGGCCACGGTGCGACCGTGGTC
GGTGCCGTAGGGAAGCCGTGAAGCGAGCCACCTGGGAAGTACGGCCGCAAGGCTGAAACT
TAAAGGAATTGGCGGGGGAGCACCACAACGGGTGGAGCTTGCGGTTTAATTGGATTCAA
CGCCGGAAATCTTACCGGGAACCACAGCAATTGAAAGGCAGGTTGAAAAATTTTGCGAA
TTAGCTGAGAGGGGGGGCTTGGCCCCTCTCCATT 
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Tables 
 
Table A1: Complete similarity matrix for summer clones compared to winter clones. 
Italicized numbers indicate a similarity index of 87 or greater; bolded numbers 
indicate sequences with a similarity index of 98.7 or greater. 
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Table A2: Complete similarity matrix for summer and winter clones that were most 
closely related to Methanosaeta concilii compared to Grosser’s clones that were 
most closely related to Methanosaeta concilii. Italicized numbers indicate a 
similarity index of 87 or greater; bolded numbers indicate sequences with a 
similarity index of 98.7 or greater. 
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Table A3: Complete similarity matrix for summer and winter clones that were most 
closely related to Methanosaeta concilii compared to Chen’s clones that were most 
closely related to Methanosaeta concilii. Italicized numbers indicate a similarity 
index of 87 or greater; bolded numbers indicate sequences with a similarity index of 
98.7 or greater. 
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Table A4: Complete similarity matrix for summer and winter clones that were most 
closely related to Methanoregula boonei, Methanospirillum hungatei and 
Methanosphaerula palustris compared to Grosser’s clones that were most closely 
related to Methanospirillum. Italicized numbers indicate a similarity index of 87 or 
greater; bolded numbers indicate sequences with a similarity index of 98.7 or 
greater. 
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