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Abstract

We present two families of diamond-colored distributive lattices – one known and

one new – that we can show are models of the type C one-rowed Weyl symmetric

functions. These lattices are constructed using certain sequences of positive integers

that are visualized as filling the boxes of one-rowed partition diagrams. We show

how natural orderings of these one-rowed tableaux produce our distributive lattices

as sublattices of a more general object, and how a natural coloring of the edges of

the associated order diagrams yields a certain diamond-coloring property. We show

that each edge-colored lattice possesses a certain structure that is associated with

the type C Weyl groups. Moreover, we produce a bijection that shows how any two

affiliated lattices, one from each family, are models for the same type C one-rowed

Weyl symmetric function. While our type C one-rowed lattices have multiple algebraic

contexts, this thesis largely focusses on their combinatorial aspects.
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Chapter 1

Introduction

Finite partially ordered sets are fundamental mathematical objects that are ubiqui-

tous in mathematics. Their uses range as widely as the organization of data structures

in computer science [Knuth] to the analysis of phenotypes in genetics [Mark]. In this

thesis, our interest in posets is two-fold: we will present two families of distributive

lattices with many pleasant combinatorial, and particularly enumerative, properties

which also serve as models (or potential models) for certain algebraic structures.

A simple, and perhaps canonical, example of a finite poset which has a distributive

lattice structure is the Boolean lattice B(n), for a fixed positive integer n. This lattice

can be defined as the set of all subsets of the n-element setN := {1, 2, . . . , n}, partially

ordered by subset containment. Of course, N is the unique maximal element in this

partial order, and ∅ is the unique minimal element. Moreover, for subsets S and T ,

the subset S ∪T is their unique least upper bound in B(n), and S ∩T is their unique

greatest lower bound. Then B(n) is distributive in the sense that ∪ distributes over

∩, and vice-versa. Now, when a subset T has exactly one element in addition to a

subset S, then there can be no subsets between S and T in this partial order; we say

that T covers S, write S → T , and think of this edge as being directed upward. That

is, S → T if and only if |T − S| = 1 and |S − T | = 0. Note, then, that |T | measures
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the number of steps from the minimal element ∅ and up to T , a quantity called the

rank of T and denoted ρ(T ). Of course, the number of subsets of N with integer size

k is
(
n
k

)
. Then, the so-called rank generating function for B(n) is the q-polynomial

RGF(B(n); q) :=
∑
T⊆N

qρ(T ) =
n∑
k=0

(
n

k

)
qk = (1 + q)n.

Observe, then, that this rank generating function can be expressed as a product

(thanks to the Binomial Theorem), that it is a symmetric polynomial (the sequence

of coefficients has a symmetric pattern from beginning to end), and that it is a

unimodal polynomial (the sequence of coefficients weakly increases up to some point

and then weakly decreases from there). Moreover, specializing to q = 1 gives us a

product formula for the cardinality of this lattice: |B(n)| = 2n.
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Figure 1.1 The Boolean lattice B(3)

One aim of this thesis is to generalize some of the combinatorial phenomena of

Boolean lattices to other settings which also have algebraic contexts. Antecedents

for our work are the theses of McClard [Mc], Alverson [Alv], and Gilliland [Gil]. All

of these theses were focussed on the problem of finding/studying distributive lattices

that could potentially serve as models for certain representations of simple complex

Lie algebras or for certain Laurent polynomials invariant under the action of the

related Weyl group. In particular, [Mc] and [Alv] investigated partial orderings of

objects called tableaux, which are positive integer fillings of the partition diagram
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associated with some fixed integer partition. Very often, natural partial orderings of

tableaux that descend from or are inspired by Lie theory have been found to exhibit

many beautiful and intricate combinatorial and algebraic properties. Our overall

objective here is to add to this preceding body of work.

Figure 1.2 The one-rowed lattice LRS
B (2, 2ω1)
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Perhaps the most direct ancestor of our work here is the sequence of papers [DLP1]

and [DLP2] by Donnelly, Lewis, and Pervine that studied two families of distributive

lattices associated with certain irreducible representations of the simple complex odd

orthogonal (type Bn)* Lie algebra so(2n + 1,C). Since special bases for each such

*The so-called “classical” Lie algebras are comprised of four infinite families associated with the
finitary GCM graphs An, Bn, Cn, or Dn from Figure 2.1. The Lie algebra of type An is the (simple,
complex) special linear Lie algebra sl(n+ 1,C) consisting of the (n+ 1)× (n+ 1) complex matrices
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representation (called “weight bases”) can be indexed by tableaux whose shape is a

single row of boxes, these were named “one-rowed” representations. The main results

of [DLP1] and [DLP2] were a demonstration that each of the two families of diamond-

colored distributive lattices are supporting graphs for two families of weight bases

and the confirmation that these weight bases possess certain extremal properties by

virtue of their unique identification with the type Bn lattices of those papers. These

results relied crucially on the elegant combinatorics of the lattices presented there and

yielded further combinatorial consequences (for example, a proof that the lattices of

both families have the so-called “strong Sperner” property). Hereafter, we call these

the type B one-rowed lattices. The Reiner-Stanton, or RS, family of type B one-

rowed lattices are indexed by two positive integers and its constituents are notated

LRS
B (n, kω1), and the Molev family is similarly indexed and its members are notated

LMol
B (n, kω1). The “kω1” of this notation is a reference to the dominant weights (cf.

Ch. 4 or [DLP1]) associated with the one-rowed representations of the type Bn (odd

orthogonal) Lie algebra. See Figures 1.2 and 1.3 for examples.

As the odd orthogonal Lie algebras are often closely linked with the symplectic

Lie algebras (for example, the type Bn odd orthogonal Lie algebra and the type Cn

symplectic Lie algebra have the same Weyl group), it makes sense to seek analogous

type Cn distributive lattices for the one-rowed representations in the symplectic case.

The one-rowed representations of the type Cn Lie algebras are at once both more

well-behaved and less tractable than their odd orthogonal counterparts. Indeed, in a

remark from [ADLP1], a family of distributive lattice supporting graphs was presented

with trace equal to zero. The Lie algebra of type Bn is the (simple, complex) special orthogonal Lie
algebra so(2n+1,C) consisting of the (2n+1)×(2n+1) skew-symmetric complex matrices; it is called
“odd orthogonal” because the matrix dimension 2n + 1 is odd. The Lie algebra of type Cn is the
(simple, complex) symplectic Lie algebra sp(2n,C) consisting of the 2n× 2n complex matrices that
preserve a certain “symplectic” form; specifically, A ∈ sp(2n,C) if and only if ATM + MA = O2n,

where M =

(
On In
−In On

)
, Om is the m×m zero matrix, and Im is the m×m identity matrix. The

Lie algebra of type Dn is the (simple, complex) special orthogonal Lie algebra so(2n,C) consisting
of the 2n× 2n skew-symmetric complex matrices; it is called “even orthogonal” because the matrix
dimension 2n is even.
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Figure 1.3 The one-rowed lattice LMol
B (2, 2ω1)
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as an interpretation of a natural weight basis construction via symmetric powers of an

originating, smallest symplectic Lie algebra representation. But a second companion

family of one-rowed lattices in type Cn to analogize the second family of one-rowed

lattices in type Bn was elusive.

Another aspect of the type Bn one-rowed lattices that was not explicitly noted in

[DLP1] and [DLP2] is that, by virtue of their efficacy as models for the type Bn one-

rowed representations, they also automatically become models for the related type

Bn Weyl symmetric functions. Said more precisely (in language we more carefully

develop later on), these Bn one-rowed lattices are splitting distributive lattices for the

family {χBn
kω1
}k≥1 of one-rowed Bn-Weyl symmetric functions.
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Figure 1.4 Type C analogs of the foregoing type B one-rowed lattices
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Our eventual goal here is to analogize this latter result to the type Cn setting.

To this end, we will present two families of diamond-colored distributive lattices –

one known and one new – and investigate their potential as splitting distributive

lattices for the for the family {χCn
kω1
}k≥1 of one-rowed Cn-Weyl symmetric functions.

(For some examples whose notation is inspired by the type B one-rowed lattices, see

Figure 1.4.) The primary contribution of this thesis is the demonstration of several

requisite combinatorial results that set the stage for this desired Weyl symmetric

function result. We will show that, relative to a certain weighting of the lattice
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elements, each lattice is, in a precise sense (cf. Ch. 2), Cn-structured, and that there

is a weight-preserving bijection between the pair of lattices associated with some given

one-rowed Cn-Weyl symmetric function χCn
kω1

. Together with the aforementioned Lie

algebraic result from [ADLP1], this last result is sufficient to conclude that the lattices

of each such pair are splitting distributive lattices for χCn
kω1

. However, we believe that

our combinatorial results will yield a more direct, non-Lie representation theoretic

proof of the latter.

This presentation will require, of course, the development of several preliminaries,

including some key notions from poset theory and from the theory of Weyl symmetric

functions. We use certain type An one-rowed lattices as a running example to illustrate

and clarify these various background ideas.
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Chapter 2

Some general background

Our work takes place within the context of a famous classification result found by

W. Killing in the 1880’s and presented in what has been referred to as “The greatest

mathematics paper of all time” [Col]. In that paper, Killing classified all of the simple

complex Lie algebras. That this classification is not commonly featured as part of

the general education of mathematicians owes perhaps to its origins as a Lie theoretic

result, since a theory of Lie algebras sufficient to comprehend this classification is not

easy to develop from scratch. However, there are other simpler contexts in which this

classification arises and which are better suited to our purposes. We will reprise one

of those contexts here.

The Networked-numbers Game. The Networked-numbers Game (most often

simply called ‘The Numbers Game’) is a one-player combinatorial game played on a

finite simple graph whose edges are assigned two integers we call amplitudes. The

game begins with a choice of integers to place on the nodes of the graph; we refer

to each such integer as a population. The only move allowed in the game is to

(1) choose a node with a positive population (our reference population), (2) modify

the population at each adjacent node by multiplying the reference population by

the appropriate amplitude and adding this to the adjacent node population, and (3)
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Figure 2.1: Connected finitary GCM graphs.
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F4
s s s s-- �

1 2 3 4

G2
s s- ���

1 2

change the sign of the reference population after the populations at all adjacent nodes

have been modified. This is called a node-firing move. The player continues the game

until no node-firing moves are possible, i.e. until all populations are nonpositive. See

Figure 2.2 below for an example.

A natural question, and indeed a crucial question from the point of view of com-

binatorics, is:

Which connected graphs actually possess a terminating Networked-numbers Games?

The answer, which is proved in [Don2], is to be found in Figure 2.1. To further de-

velop the content and context of that figure, we next provide a more precise set-up

of the game and some related notions.

Formally, we take as our starting point some given simple graph Γ on n nodes. In
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particular, Γ has no loops and no multiple edges. Nodes {γi}i∈In for Γ are indexed by

elements of some fixed totally ordered set In of size n (usually In = {1 < 2 < · · · <

n}). For each pair of adjacent nodes γi and γj in Γ, choose two negative integers aij

and aji. Extend this to an n × n matrix A = (aij)i,j∈In where, in addition to the

negative integers aij and aji taken from the edges of Γ, we have aii := 2 for all i ∈ In

and aij := 0 if there is no edge in Γ between nodes γi and γj.

We call the pair (Γ, A) a GCM graph, since A is a ‘generalized Cartan matrix’ as in

[Kac] and [Kum]. Generalized Cartan matrices have several algebraic contexts which

we briefly mention here. Such matrices are the starting point for the study of Kac–

Moody Lie algebras. These matrices also encode information about root systems

and their associated Weyl groups. The latter provide a suitable environment for

studying “Weyl symmetric functions,” which can be thought of as special multivariate

Laurent polynomials which are invariant under a certain natural action of the Weyl

group. An overarching goal of our work is to find nice poset models for such Weyl

symmetric functions. See Ch. 4 for further development of the ideas in the preceding

two sentences.

We say a GCM graph (Γ, A) is connected if Γ is. We depict a generic connected

two-node GCM graph as r
γ1

r
γ2

- �
p q , where p = −a12 and q = −a21. Those

two-node GCM graphs which have p = 1 and q = 1, 2, or 3 (respectively) have special

names:

A2r
γ1

r
γ2

- �
C2r

γ1
r
γ2

- ��
G2r

γ1
r
γ2

- ���

When p = 1 and q = 1 it is convenient to use the graph r
γ1

r
γ2 to represent

the GCM graph A2. A GCM graph (Γ, A) is finitary if each connected component

of (Γ, A) (in the obvious sense) is one of the graphs of Figure 2.1. In exactly these

cases, the affiliated root system and Weyl group are irreducible and finite and the

related Kac–Moody alegbra is simple and finite-dimensional, and we call the matrix A

a Cartan matrix. We number the nodes of connected finitary GCM graphs as in §11.4
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Figure 2.2: The numbers game for the finitary GCM graph C2.r
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of [Hum]. The special two-node GCM graphs A2, C2, and G2 above are finitary GCM

graphs with Cartan matrices

 2 −1

−1 2

,

 2 −1

−2 2

, and

 2 −1

−3 2

. Objects

relating to some connected finitary GCM graph Xn, where X ∈ {A,B,C,D,E,F,G},

will be referred to as having/being of type Xn.

The moves of a Networked-numbers Game are naturally viewed as involutory linear

transformations in the following way. To a given n-node GCM graph (Γ, A) with index

set I, we associate the Z-module of integer n-tuples Λ := Zn. Elements of Λ are called

weights; a weight λ = (λi)i∈I ∈ Λ is dominant (respectively, strongly dominant) if each

λi is nonnegative (resp. positive). For a fixed j ∈ I, the jth fundamental weight is

(δij)i∈I . For an i ∈ I, let αi be the ith row vector of A. Let Si : Λ −→ Λ be

the transformation given by Si(µ) := µ − µiαi, where µ = (µj)j∈I . One can easily

check that Si is Z-linear and involutory (i.e. S2 = Id, the identity transformation).

Denote by GL(Λ) the group of invertible Z-linear transformations Λ −→ Λ, and let

W (Γ, A) := 〈{Sj}j∈I〉 be the subgroup of GL(Λ) generated by the Si’s. We called

W (Γ, A) the Weyl group (or sometimes the NNG group) associated with the GCM
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graph (Γ, A).

We can identify each weight µ = (µi)i∈I ∈ Λ with a monomial zµ :=
∏

i∈I z
µi
i ,

where the zi’s are indeterminates. Let L (Γ, A) be the space of Laurent polynomials∑
µ∈Λ

cµz
µ where the cµ’s are integers and only finitely many are nonzero. The adjective

“Laurent” makes reference to the fact that the integer exponents in a monomial zµ

can be negative. Now, W := W (Γ, A) acts on L (Γ, A) via the rule Si.z
µ := zSi(µ) for

any i ∈ I and µ ∈ Λ. An element χ ∈ L (Γ, A) is a (Γ, A)-Weyl symmetric function

if it is W -invariant, i.e. S.χ = χ for all S ∈ W . We use L (Γ, A)W to denote the ring

and Z-module of (Γ, A)-Weyl symmetric functions.

In [Don2], Donnelly shows that the existence of a terminating numbers game

played on a connected GCM graph from a (nontrivial) dominant weight is equivalent

to the finiteness of the associated Weyl group, in which case the connected GCM

graph is represented in Figure 2.1. Donnelly has recently learned that existence

of a non-constant (Γ, A)-Weyl symmetric function is also equivalent to finiteness of

W (Γ, A).

So the study of such Weyl symmetric functions is necessarily a finitary subject.

There is much interesting combinatorics (enumerative, order-theoretic, etc) that flows

out of this subject. For example, the combinatorially rich, well-known, and well-

developed subject of classical symmetric functions is merely the type A case of the

more general Weyl symmetric function theory whose basic framework is articulated

above. Our goal is to find interesting, and hopefully elegant and fruitful, combinato-

rial models for certain Weyl symmetric functions in other types. The combinatorial

models we seek are posets whose structure should allow us to concretely understand

related algebraic structures – especially certain Weyl symmetric functions – and whose

algebraic context should allow us to infer further combinatorial properties of our poset

models. That is, our poset models should be a two-way street between combinatorics

and algebra.
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A backgrounder on posets. Our interest is in finding combinatorially inter-

esting partially ordered sets that exhibit and model aspects of the various algebraic

structures related to the connected finitary GCM graphs, most particularly their Weyl

symmetric functions. Next we provide a brief overview of poset concepts most per-

tinent to our purposes. We mostly follow the notation and terminology of [DDDS]

and references therein, which can be consulted for more detail. We note that the use

of edge-coloring below is intended to connect us back to the world of (Γ, A) GCM

graphs. More specifically, the Xn-structure property connects a poset directly to the

action of the generators of the Weyl group W (Γ, A). This tie-in between Weyl group

invariant Laurent polynomials and the combinatorics of posets will be further devel-

oped in Ch. 4, but we have developed some of the details here because we want the

reader to have this context at least partly in mind for the combinatorics that will

follow.

Given a poset P with partial ordering relation “≤” (reflexive, anti-symmetric,

transitive), a covering relation is an ordered pair of poset elements (x,y) ∈ P × P

with the property that x = z or y = z whenever x ≤ z ≤ y. We depict the ordered

pair (x,y) as a directed edge x→ y. The order diagram for this poset, also denoted

by P , is the directed graph whose vertices are the poset elements and whose directed

edges are the covering relations. When needed, we use the notation V(P ) to denote

the vertex set of the order diagram and E(P ) to denote the set of directed edges. All

posets in this paper are finite. When we depict posets, edges will be directed upward,

so arrowheads on directed edges will often not be drawn. We apply graph theoretic

notions (connectedness, adjacency of vertices, etc) to a poset by applying them to its

order diagram.

A poset R is ranked if there is a nonnegative integer ` and a surjective function

ρ : R −→ {0, 1, . . . , `} for which ρ(x)+1 = ρ(y) for any covering relation x→ y. The

number ` is the length of R with respect to the rank function ρ. The related depth
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function δ : R −→ {0, 1, . . . , `} is given by δ(x) := `− ρ(x). (If R is connected, then

the rank and depth functions are unique.) This ranked poset is rank symmetric if,

for each integer r ∈ {0, 1, . . . , `} we have |ρ−1(r)| = |ρ−1(`− r)|. It is rank unimodal

if, for some integer u ∈ {0, 1, . . . , `}, we have

|ρ−1(0)| ≤ |ρ−1(1)| ≤ · · · ≤ |ρ−1(u− 1)| ≤ |ρ−1(u)| ≥ |ρ−1(u+ 1)| ≥ · · · ≥ |ρ−1(`− 1)| ≥ |ρ−1(`)|.

We define the rank generating function RGF(R; q) by the rule

RGF(R; q) :=
∑
x∈R

qρ(x) =
∑̀
i=0

|ρ−1(i)|qi,

a polynomial in the variable q wherein the coefficient of the term containing qi is the

number of elements of R which have rank i.

We now consider posets which some additional structure. A lattice L is a poset

for which any two given elements x and y of L have a (unique) least upper bound,

denoted x ∨ y and called their join, and a (unique) greatest lower bound, denoted

x ∧ y and called their meet. Observe that such a lattice is necessarily connected and

has a unique maximal element max(L) and a unique minimal element min(L). This

lattice is modular if and only if L is ranked and ρ(x∧y) + ρ(x∨y) = ρ(x) + ρ(y) for

any x,y ∈ L. The lattice L is distributive if and only if meets distribute over joins

and vice-versa; that is, x∧(y∨z) = (x∧y)∨(x∧z) and x∨(y∧z) = (x∨y)∧(x∨z)

for any given x,y, z ∈ L. Any distributive lattice is modular, but not all modular

lattices are distributive.

Some of the preceding notions can be usefully “colorized.” A set I of order n will

serve as our set of “colors”; for convenience, in the following discussion we take I to

be {1, 2, . . . , n}. A poset P together with a function edgecolor : E(P ) −→ I is an

edge-colored poset. An edge x→ y in P with color i ∈ I is denoted x
i→ y. Assuming

P is edge-colored and J ⊆ I, then the J-component of an element x ∈ P is the
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connected subgraph compJ(x) of the order diagram of P whose vertices and edges

are obtained as follows: The vertices V(compJ(x)) are all those poset elements that

can be reached from x by traversing a path whose edge colors are in J (we disregard

edge directions when traversing edges along such a path); the edges E(compJ(x))

are all edges from E(P ) whose colors are in J and which are incident with some

vertex in V(compJ(x)). A modular lattice is diamond-colored if whenever rr r r��

@@
@@

��k l
i j

is

an edge-colored subgraph of the affiliated order diagram, then i = l and j = k. In

a diamond-colored modular (respectively distributive) lattice, for all lattice elements

x and all edge-color subsets J we have that V(compJ(x)) is the order diagram for a

modular (respectively distributive) lattice.

Now suppose R is a ranked poset with edges colored by the set I. Then for any

x ∈ R and any i ∈ I, the i-component compi(x) is ranked with a unique rank

function ρi and a unique depth function δi. We define the weight of x, denoted wt(x),

to be the integer n-tuple

wt(x) =
(
ρi(x)− δi(x)

)
i∈I

.

Let z1, z2, . . . , zn be variables, and for an integer n-tuple µ = (µ1, µ2, . . . , µn) declare

that zµ := zµ11 zµ22 · · · zµnn . The weight generating function WGF(R; z1, . . . , zn) in the

variables z1, . . . , zn is defined by the rule

WGF(R; z1, . . . , zn) :=
∑
x∈R

zwt(x).

Now let Xn be a connected finitary GCM graph from Figure 2.1, and for any i ∈ I,

let αi be the ith row vector of the associated Cartan matrix A = (aij)i,j∈I . We say the

edge-colored ranked poset R is Xn-structured if wt(x) + αi = wt(y) whenever x
i→ y

in R. This condition is equivalent to the assertion that for any edge x
i→ y in R and
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for any j 6= i, we have

ρj(x)− δj(x) + aij = ρj(y)− δj(y).

In Ch. 4, we will see that when R is Xn-structured and has i-components exhibiting

a certain kind of easily-checked symmetry, then WGF(R; z1, . . . , zn) is invariant with

respect to a natural action of the type Xn Weyl group, i.e. WGF(R; z1, . . . , zn) is an

Xn-Weyl symmetric function.

Very often in our work, the combinatorial objects of interest occur naturally as

substructures of other objects. In this paragraph, we briefly remark on the poset

substructures that are most useful for our purposes here. Given a subset P of a poset

Q, let P inherit the partial ordering of Q; call P a subposet in the induced order. For

posets (P,≤P ) and (Q,≤Q), suppose P ⊆ Q and x ≤P y⇒ x ≤Q y for all x,y ∈ P .

Then P is a weak subposet of Q. We apply the language of edge-coloring to subposets

in the obvious ways. Now let L be a lattice with partial ordering ≤L and meet and

join operations ∧L and ∨L respectively. Let K be a vertex subset of L. Suppose that

K has a lattice partial ordering ≤K of its own with meet and join operations ∧K

and ∨K respectively. We say K is a sublattice of L if for all x and y in K we have

x ∧K y = x ∧L y and x ∨K y = x ∨L y. It is easy to see that if K is a sublattice

of L then for all x and y in K we have x ≤K y if and only if x ≤L y. That is,

K is a weak subposet of L and a subposet in the induced order. If, in addition, K

and L are edge-colored and K is an edge-colored weak subposet of L, then call K

an edge-colored sublattice of L. Whether or not K and L are edge-colored, if K is a

sublattice of L, if both K and L are ranked, and if both have the same length, then

we say K is a full-length sublattice of L. In this case, for any given x,y ∈ K, it can

be seen that the rank of x as an element of K is the same as its rank as an element

of L and that y covers x in K if and only if y covers x in L. Therefore such a lattice
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K naturally inherits an edge-coloring of L. We record (and mildly extend) some of

these observations in the following lemma.

Lemma 2.1 Let L be a diamond-colored distributive lattice. Suppose K is a subset

of L for which x∨y and x∧y are in K whenever x,y ∈ K. Give K the induced order

from L. Then K is a sublattice of L, and K is a distributive lattice when regarded

as a poset on its own. Moreover, if K is a full-length sublattice, then every edge in

K is also an edge in L and K is diamond-colored when its edge coloring is inherited

from L.

The type A one-rowed lattices. Fix positive integers N and k with N ≥ 2. To

illustrate the ideas which we are extending in this thesis, we will begin by considering

some classical distributive lattices that are indexed by these two integer parameters.

These distributive lattices are type A objects in that they are AN−1-structured and

have a well-understood relationship with certain irreducible representations of the

type AN−1 simple complex special linear Lie algebra and certain type AN−1-Weyl

symmetric functions. We explore some of these latter connections in Ch. 4, and here

focus on combinatorial features. In particular, the type AN−1 connection is made by

imposing a certain coloring on the edges of the order diagrams for these lattices.

A type AN−1 one-rowed tableau of length k is a k-tuple T = (T1, T2, . . . , Tk) with

1 ≤ T1 ≤ T2 ≤ · · · ≤ Tk ≤ N . (Such a k-tuple can be viewed as a k-element

multisubset of the set {1, 2, . . . , N}, in that the elements comprising T are allowed

to repeat.) We view each such k-tuple T as a row of k boxes filled from left to right

with the integers T1, T2, . . . , Tk:

T1 T2 · · · Tk .

We let LA(n, kω1) be the set consisting of all type AN−1 one-rowed tableaux of length

k partially ordered by reverse-componentwise comparison, i.e. if S = (S1, . . . , Sk) and
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T = (T1, . . . , Tk) are in LA(N − 1, kω1), then S ≤ T if and only if Si ≥ Ti for each

i ∈ {1, 2, . . . , k}. It is a simple exercise to verify that LA(N − 1, kω1) is a lattice

with S ∨ T = (min{Si, Ti})ni=1 and S ∧ T = (max{Si, Ti})ni=1 as the join and meet

respectively of any two given length k type AN−1 one-rowed tableaux S and T . By

Lemma 2.2.3 of [Mc], it follows that LA(N − 1, kω1) is a distributive lattice. Various

depictions of these lattices are interspersed throughout the following narrative.

1

2

(a) LA(1, 1ω1)

1 1

1 2

2 2

(b) LA(1, 2ω1)

1 1 1

1 1 2

1 2 2

2 2 2

(c) LA(1, 3ω1)

Before addressing the edge-coloring scheme for the order diagram of LA(N−1, kω1),

we remark briefly on some of its enumerative aspects. In this paragraph, we sometimes

use “L” as an abbreviation for “LA(N −1, kω1).” Now, the number of k-element mul-

tisubsets taken from {1, 2, . . . , N} is a number often denoted

 N

k

 and called

a multi-choose coefficient. A simple and classic enumerative exercise is to estab-

lish the following identity of multi-choose and binomial coefficients:

 N

k

 =

 N − 1 + k

k

. Since the one-rowed tableaux in L can be exactly identified with the

k-element multisubsets of {1, 2, . . . , N}, then the size of L is

CARD(LA(N − 1, kω1)) =


 N

k


 .
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We define the q-multi-choose coefficient

 N

k


q

in the same way that the q-

binomial coefficient

 N − 1 + k

k


q

is defined, namely as the quotient

[N − 1 + k]q[N − 1 + k − 1]q · · · [N − 1 + k − (k − 1)]q
[k]q!

=
[N − 1 + k]q[N − 1 + k − 1]q · · · [N ]q

[k]q!
,

where the q-integer [m]q := qm−1 + qm−2 + · · · + q + 1 = qm−1
q−1

and the q-factorial

[m]q! := [m]q[m − 1]q · · · [2]q[1]q are defined in the usual way when m is a positive

integer, and [0]q := 0 (as an empty sum) and [0]q! := 1 (as an empty product). As

easy calculation shows that the q-multi-choose coefficients satisfy the recurrence


 m

j



q

= qj


 m− 1

j



q

+


 m

j − 1



q

for positive integers m and j, and with

 m

0


q

= 1 for m ≥ 0 and

 0

j


q

= 0

for j > 0. Now, the rank of a tableau T in L is easily seen to be

ρ(T ) = kN −
k∑
i=1

Ti.

In Proposition 2.2.(4) below, we prove that
∑

T∈L q
ρ(T ) =: RGF(LA(N − 1, kω1); q) = N

k


q

.

Now, any edge of the order diagram for LA(N − 1, kω1) is a covering relation

S → T wherein there is some q ∈ {1, 2, . . . , k} such that Sq − 1 = Tq while Sp = Tp

when p ∈ {1, 2, . . . , k} \ {q}. In this case, Tq ∈ {1, 2, . . . , N − 1}; we let i := Tq

be the color of this order diagram edge and write S
i→ T . It is easy to verify that

with respect to this edge coloring, LA(N − 1, kω1) is a diamond-colored distributive

lattice. Therefore we may consider the weight wt(T ) = (ρi(T )−δi(T ))N−1
i=1 of a generic

tableau T from LA(N − 1, kω1). In Proposition 2.2.(2) below we demonstrate that
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1

2

3

(a) LA(2, 1ω1)

1 1

1 2

2 2 1 3

2 3

3 3

(b) LA(2, 2ω1)

1 1 1

1 1 2

1 2 2 1 1 3

2 2 2 1 2 3

2 2 3 1 3 3

2 3 3

3 3 3

(c) LA(2, 3ω1)

this integer (N − 1)-tuple can be computed in terms of the quantities #(T, i) for the

indices i ∈ {1, 2, . . . , N − 1}, where #(T, i) counts the number of times i appears as

a entry in T .

This family of diamond-colored distributive lattices arises in two algebraic contexts

of interest to us. A complete understanding of these contexts is not necessary in

order to understand the combinatorics that follows; however, these contexts certainly

strongly motivate our interest, so we briefly mention them here and offer more detail

in Ch. 4. First, the given lattice LA(N − 1, kω1) is the unique supporting graph for

what we will call the kth “one-rowed representation” of the simple complex special

linear Lie algebra sl(N,C). This representation can be realized as the kth symmetric

power of theN -dimensional defining representation of sl(N,C). Up to a certain notion

of equivalence, there is only one possible weight basis for this representation, and this

weight basis has supporting graph LA(N − 1, kω1). Second, LA(N − 1, kω1) is the

unique splitting poset for what we will call the kth “one-rowed AN−1-Weyl symmetric

function” denoted χ
AN−1

kω1
, which is a Laurent polynomial in N − 1 variables that is

invariant under a natural action of the symmetric group SN .
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1

2

3

4

(a) LA(3, 1ω1)

1 1

1 2

2 2 1 3

2 3 1 4

3 3 2 4

3 4

4 4

(b) LA(3, 2ω1)

1 1 1

1 1 2

1 2 2 1 1 3

2 2 2 1 1 41 2 3

2 2 3 1 3 3 1 2 4

2 3 3 2 2 4 1 3 4

2 3 43 3 3 1 4 4

2 4 43 3 4

3 4 4

4 4 4

(c) LA(3, 3ω1)

Some of the more desirable combinatorial features of LA(N − 1, kω1) are direct

consequences of the fact that this lattice serves as a model for the kth one-rowed

irreducible representation of sl(N,C) and for the kth one-rowed AN−1-Weyl symmetric

function. In particular, it can be concluded that this lattice is rank symmetric, rank

unimodal, and strongly Sperner, and that its rank-generating function is expressible

as a quotient of products. Certain of the preceding conclusions can be obtained

directly, which we record in the next proposition.

Proposition 2.2 The following are facts about the one-rowed lattice LA(N−1, kω1):

(1) Now let T = (T1, . . . , Tk) be a one-rowed tableau from LA(N − 1, kω1). Then

wt(T ) = (#(T, 1)−#(T, 2),#(T, 2)−#(T, 3), . . . ,#(T,N − 1)−#(T,N)).

(2) LA(N − 1, kω1) is AN−1-structured.
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(3) We have the following well-known identity:

RGF(LA(N − 1, kω1); q) =


 N

k



q

=

 N − 1 + k

k


q

.

That is, the rank generating function of LA(N−1, kω1) is the q-multi-choose coefficient N

k


q

, which is also the q-binomial coefficient

 N − 1 + k

k


q

.

Proof. For part (1), suppose our tableau T has the following form:

· · · Tp = i Tq−1 = i · · · Tq−1 = i Tq = i+ 1 · · · Tq = i+ 1 Tr = i+ 1 · · ·

where Tp−1 < i (if p > 1) and Tr+1 > i + 1 if (r < k), and possibly #(T, i) = 0 and

#(T, i+1) = 0. Observe that there are q−p steps from T down to the minimal element

of compi(T ) and r − q + 1 steps from T up to the maximal element of compi(T ).

So ρi(T ) = #(T, i) and δi(T ) = #(T, i+ 1), so ρi(T )− δi(T ) = #(T, i)−#(T, i+ 1).

To prove (2), we note that it is enough to check that for any distinct edge colors

i and j and any edge S
i→ T , we have

ρj(S)− δj(S) + aij = ρj(T )− δj(T ), (2.0.1)

where aij is the (i, j)-entry of the AN−1 GCM with rows/columns indexed in concert

with the node labels of the (finitary) GCM graph AN−1 from Figure 2.1. Now, by

(1), ρj(X)− δj(X) = #(X, j)−#(X, j+ 1) for any tableau X. So, first suppose that

indices i and j correspond to adjacent nodes in the GCM graph AN−1 with j = i+ 1,

so ai,j = −1 = aj,i. Since T is formed from S by changing some entry Sq = i + 1 to

Tq = i whilst all other Sp’s and Tp’s coincide, then we have: ρi+1(S)−δi+1(S)+ai,i+1 =

#(S, i+ 1)− 1−#(S, i+ 2) = #(T, i+ 1)−#(T, i+ 2) = ρi+1(T )− δi+1(T ), thereby

verifying equation (1) above when j = i+1. A similar argument establishes (1) under

the supposition j = i− 1. Finally, suppose i and j correspond to distant nodes in the
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Dynkin diagram for AN−1, so |j − i| > 1. Now, T is formed from S by changing an

i+ 1 in S to an i. Since any j and j + 1 entries in S are distant from its i and i+ 1

entries, then T will have the same j and j + 1 entries as S. That is, ρj(S)− δj(S) =

ρj(T )− δj(T ). Since ai,j = 0 in this case, we get ρj(S)− δj(S) + ai,j = ρj(T )− δj(T ).

Now we prove the identity in (3). It is well-known that, if we ignore edge colors,

the one-rowed lattice LA(N−1, kω1) is isomorphic to the type AN−1 elementary lattice

LA(k,N − 1) via the correspondence T = (T1, . . . , Tk) in LA(N − 1, kω1) becomes the

columnar tableau T ′ = (T1, T2 + 1, T3 + 2, . . . , Tk + k − 1) in LA(k,N − 1). Since

RGF(LA(k,N − 1); q) =
(
N−1+k

k

)
q
, then RGF(LA(N − 1, kω1); q) =

(
N−1+k

k

)
q
.

This same result can be obtained more directly as follows. Partition the one-rowed

tableaux of LA(N−1, kω1) into two disjoint subsets, namely, those one-rowed tableaux

which contain an “N” and those which do not, denoted S
N?Yes

and S
N?No

respectively.

The induced-order subposet S
N?No

is clearly isomorphic to LA(N − 2, kω1), and the

rank of the minimal element (N − 1, N − 1, . . . , N − 1) of S
N?No

in LA(N − 1, kω1) is

k. The induced-order subposet S
N?Yes

is clearly isomorphic to LA(N − 1, (k − 1)ω1),

and its minimal element (N,N, . . . , N) is the minimal element of LA(N − 1, kω1).

Therefore

RGF(LA(N − 1, kω1); q) = qkRGF(LA(N − 2, kω1); q) + RGF(LA(N − 1, (k − 1)ω1); q),

which coincides with the above-noted recurrence of q-multi-choose coefficients:


 N

k



q

= qk


 N − 1

k



q

+


 N

k − 1



q

.

The type B one-rowed lattices. Before presenting our type C one-rowed lat-

tices, we will summarize and mildly re-contextualize work from [DLP1] with the type

B one-rowed lattices. Fix positive integers n and k, and define a recoloring function
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σ : {1, 2, . . . , 2n} −→ {1, 2, . . . , n} by the rule

σ(i) :=

 i if i ∈ {1, 2, . . . , n}

2n+ 1− i if i ∈ {n+ 1, n+ 2, . . . , 2n}
.

Now let L̃B(n, kω1) be the diamond-colored distributive lattice formally denoted by

LA(2n, kω1)σ, i.e. the lattice obtained by giving each color i edge of LA(2n, kω1) the

color σ(i).

Next, we apply Lemma 2.1 in order to locate two special sublattices of L̃B(n, kω1).

First, let LMol
B (n, kω1) be the induced-order subposet of L̃B(n, kω1) consisting of those

one-rowed tableaux T = (T1, . . . , Tk) with the property that #(T, n + 1) ≤ 1. Now,

it is clear that for tableaux S, T ∈ LMol
B (n, kω1), the tableau (min{Si, Ti})ki=1 = S ∨ T

in L resides in LMol
B (n, kω1) and the tableau (max{Si, Ti})ki=1 = S ∧ T also resides

in LMol
B (n, kω1). Further, one can discern that LMol

B (n, kω1) is a full-length sublattice

of L̃B(n, kω1) (as X := min(L̃B(n, kω1)) and Y := max(L̃B(n, kω1)) are both in

LMol
B (n, kω1) and there is a path of edges from X up to Y that stays in LMol

B (n, kω1) and

has the same length as L̃B(n, kω1)), and therefore its edges are a subset of the edges of

the larger lattice and inherit their edge colors. Second, let LRS
B (n, kω1) be the induced-

order subposet of L̃B(n, kω1) consisting of those one-rowed tableaux T = (T1, . . . , Tk)

with the property that Tk < 2n whenever T1 = 1. As in the previous case, one

can see that LRS
B (n, kω1) is closed under the join and meet operations, that it is a

full-length sublattice of L̃B(n, kω1), and that the edges of LRS
B (n, kω1) are edges from

L̃B(n, kω1) and inherit their edge colors. So, both LMol
B (n, kω1) and LRS

B (n, kω1) are

diamond-colored distributive sublattices of L̃B(n, kω1).

Results for L̃B(n, kω1), LRS
B (n, kω1), and LMol

B (n, kω1) similar to Proposition 2.2 are

established implicitly in [DLP1] but without the same systematic intentionality best

suited to our purposes here.

Theorem 2.3 cf. [DLP1] Let L be one of L̃B(n, kω1), LRS
B (n, kω1), or LMol

B (n, kω1).
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Then:

(1) For a one-rowed tableau T = (T1, . . . , Tk) in L, we have

wt(T ) =
(

#(T, 1)−#(T, 2) + #(T, 2n)−#(T, 2n+ 1), . . . ,#(T, i)−#(T, i+ 1)

+ #(T, 2n+ 1− i)−#(T, 2n+ 2− i), . . . ,#(T, n− 1)−#(T, n)

+ #(T, n+ 2)−#(T, n+ 3),2#(T, n)− 2#(T, n+ 2)
)
.

(2) L is Bn-structured.

(3) There exists a weight-preserving bijection ϕ : LRS
B (n, kω1) −→ LMol

B (n, kω1), so

that

WGF(LRS

B (n, kω1); z1, z2, . . . , zn) = WGF(LMol

B (n, kω1); z1, z2, . . . , zn).

Moreover, RGF(LRS
B (n, kω1); q) = RGF(LMol

B (n, kω1); q)

=

 2n+ k

k


q

− q2n

 2n+ k − 2

k − 2


q

.

Proof. The proof of part (1) can be found within the penultimate paragraph of

the proof of Theorem 2.1 of [DLP1]; the final paragraph of that proof demonstrates

part (2) of the above theorem statement. For part (3), an explicit formulation of such

a bijection ϕ can be found in the Introduction of [DLP1], where it is noted that this

bijection is rank-preserving. It is easy to see that the bijection is weight-preserving as

well. That RGF(LRS
B (n, kω1); q), and hence RGF(LMol

B (n, kω1); q), have rank generating

functions of the form prescribed in the theorem statement above is established in

[RS], although this also follows as a corollary of Theorem 2.1 of [DLP1].
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Chapter 3

The type C one-rowed lattices

In this chapter, we present type Cn analogs of the type Bn one-rowed lattices and prove

in Theorems 3.1 and 3.2 that they possess certain crucial combinatorial features.

These theorems are the main results of this thesis. In particular, Theorem 3.2.(2)

most strongly connects our type Cn one-rowed lattices to the action of the Weyl

group associated with the type Cn finitary GCM graph and (mostly) shows that the

weight-generating functions for these one-rowed lattices are W (Cn)-invariant; see Ch.

4 for further discussion of these algebraic contexts.

We begin by presenting a family of large type Cn lattices that will contain the

lattices of interest to us as sublattices. These large lattices analogize the type Bn

lattices denoted L̃B(n, kω1). Define

L̃C(n, kω1) :=

{
T1 T2 · · · Tk (*)

}
,

where (*) is the requirement that 1 ≤ Ti ≤ Ti+1 ≤ 2n for each 1 ≤ i ≤ k − 1 unless

(Ti, Ti+1) = (n+ 1, n) with Ti−1 ≤ n (if 1 ≤ i− 1) and Ti+2 ≥ n+ 1 (if i+ 2 ≤ k). We

partially order L̃C(n, kω1) by reverse-componentwise comparison, as with the type A

and B one-rowed lattices. For S and T in L̃C(n, kω1), we have a covering relation

S → T if there is a q ∈ {1, · · · , k} with Tq = Sq − 1 while Tp = Sp for p 6= q. In this
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case, we write S
i→ T if Tq ∈ {i, 2n− i}.

Next, we define the subsets

(Molev) LMol
C (n, kω1) :=

{
T1 T2 · · · Tk ∈ L̃C(n, kω1) Ti ≤ Ti+1 ∀ 1 ≤ i ≤ k−1

}
and

(RS) LRS
C (n, kω1) :=

{
T1 T2 · · · Tk ∈ L̃C(n, kω1) 1 = T1 ⇒ Tk < 2n

}
,

and we give these subsets the induced order. A one-rowed tableau T from L̃C(n, kω1)

that also resides in LMol
C (n, kω1) (respectively, LRS

C (n, kω1)) is Molev-admissible (resp.

RS-admissible); otherwise T is Molev-inadmissible (resp. RS-inadmissible). In our

next result, we will demonstrate that L̃C(n, kω1) is a diamond-colored distributive

lattice and that each of LMol
C (n, kω1) and LRS

C (n, kω1) are full-length sublattices. Then,

we will regard edges and edge colors of LMol
C (n, kω1) and LRS

C (n, kω1) to be inherited

from L̃C(n, kω1).

Theorem 3.1 Take L̃C(n, kω1), LMol
C (n, kω1), and LRS

C (n, kω1) as above. Then L̃C(n, kω1)

is a diamond-colored distributive lattice, and LMol
C (n, kω1) and LRS

C (n, kω1) are full-

length distributive sublattices.

Proof. We begin by considering the edge-colored lattice L(n) := L̃C(n, ω1) =

LMol
C (n, ω1) = LRS

C (n, ω1), which is a chain with 2n elements and therefore length 2n−1.

Let L(n)×k := L(n)× L(n)× · · · × L(n), an edge-colored product poset in the usual

way, with k factors of L(n). Then L(n)×k is a diamond-colored distributive lattice

in the reverse-componentwise order, with X ∨ Y = (min{Xi, Yi})ki=1 and X ∧ Y =

(max{Xi, Yi})ki=1 for any X, Y ∈ L(n)×k.

To prove that L̃C(n, kω1) is a diamond-colored distributive lattice, it suffices by

Lemma 2.1 to prove that L̃C(n, kω1) is a full-length sublattice of L(n)×k that is closed

under joins and meets. For closure, it suffices to prove that if S = (S1, . . . , Sk)

and T = (T1, . . . , Tk) are any one-rowed tableaux in L̃C(n, kω1), then their reverse-

componentwise minimum U := (min{Si, Ti})ki=1 = S∨T in L(n)×k resides in L̃C(n, kω1)

and that their reverse-componentwise maximum R := (max{Si, Ti})ki=1 = S ∧ T in
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L(n)×k also resides in L̃C(n, kω1).

To establish that U resides in L̃C(n, kω1), we must demonstrate that the one-rowed

tableau U meets the requirements for membership in L̃C(n, kω1), i.e. 1 ≤ U1 ≤ · · · ≤

Uk ≤ 2n unless (Ui, Ui+1) = (n+1, n) for some i ∈ {1, 2, . . . , k−1} where Ui−1 ≤ n (if

1 ≤ i−1) and Ui+2 ≥ n+1 (if i+2 ≤ k). Now, both S and T are in L̃C(n, kω1), which

tells us that 1 ≤ S1 and 1 ≤ T1; thus 1 ≤ U1 = min(S1, T1). Likewise, neither Sk nor

Tk exceeds 2n, so Uk ≤ 2n. Let i be some index from the set {1, 2, . . . , k−1}. Without

loss of generality, we may assume that Ui+1 = min(Si+1, Ti+1) coincides with Si+1, so

Si+1 ≤ Ti+1. Let us suppose for the moment that Si ≤ Si+1. Since Ui ≤ Si ≤ Si+1,

then we have Ui ≤ Ui+1. To conclude that U is in L̃C(n, kω1), it only remains to

be shown that if Ui > Ui+1, then Ui = n + 1, Ui+1 = n, Ui−1 ≤ n (if i > 1), and

Ui+2 ≥ n+ 1 (if i+ 1 < k).

So, suppose Ui > Ui+1. Above, we showed that if Si ≤ Si+1, then Ui ≤ Ui+1. So

it must be the case that Si > Si+1. This means that Si = n + 1, Si+1 = n, Si−1 ≤ n

(if i > 1), and Si+2 ≥ n + 1 (if i + 1 < k). Now if Ui = Ti < Si, then the fact

that Ui > Ui+1 implies that Si+1 < Ti < Si. But the latter is impossible, since it

would require n < Ti < n + 1. We conclude that Ui = Si. Therefore we know that

Ui = n + 1 and Ui+1 = n. Also, if i > 1, note that Ui−1 ≤ Si−1 and that Si−1 ≤ n,

hence Ui−1 ≤ n.

To complete the argument that U ∈ L̃C(n, kω1), we need to show that if i+ 1 < k,

then Ui+2 ≥ n+ 1. Well, if Ui+2 = Si+2, we are done. So, assume that Ui+2 = Ti+2 <

Si+2. To show that Ti+2 ≥ n + 1, we suppose otherwise and derive a contradiction.

So, suppose that Ti+2 < n + 1. If Ti+2 = n and Ti+1 = n + 1, then by the defining

properties of the L̃C(n, kω1) tableaux, Ti should be at most n; but Ti ≥ Ui = n + 1

implies Ti ≥ n + 1, which is a contradiction. So we must have Ti+1 ≤ Ti+2 ≤ n.

Together with the fact that n = Ui+1 ≤ Ti+1, we get n ≤ Ti+1 ≤ Tn+2 ≤ n, hence

Ti+1 = n = Ti+2. If Ti > n, then we would have Ti = n + 1, Ti+1 = n, and therefore
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Ti+2 ≥ n+1, contradicting Ti+2 = n. So now Ti ≤ n. But, n+1 = Ui ≤ Ti ≤ n, which

is a contradiction. We conclude that Ti+2 ≥ n + 1, which completes the argument

that U ∈ L̃C(n, kω1).

A parallel argument establishes that R = S ∧ T also resides in L̃C(n, kω1). Then,

L̃C(n, kω1) is a distributive lattice in its given reverse-componentwise order.

We now verify that LMol
C (n, kω1) and LRS

C (n, kω1) are closed under joins and meets

within L̃C(n, kω1). To this end, first suppose that the foregoing S and T are actually

members of LMol
C (n, kω1), and take U := (min{Si, Ti})ki=1 = S∨T in L(n)×k as before.

We already know that U ∈ L̃C(n, kω1), so to conclude that U ∈ LMol
C (n, kω1) we

must show that Ui ≤ Ui+1 whenever i ∈ {1, 2, . . . , k − 1}. For such an i, suppose

without loss of generality that Ui = min{Si, Ti} = Si. If Ui+1 = Si+1, then we

have Ui = Si ≤ Si+1 ≤ Ui+1, and we are done. If Ui+1 = Ti+1, then we have

Ui = Si ≤ Si+1 ≤ Ti+1 = Ui+1, and we are done. Either way, U ∈ LMol
C (n, kω1).

Similarly see that R := (min{Si, Ti})ki=1 = S∨T ∈ L(n)×k also resides in LMol
C (n, kω1).

Next, take S, T , and U as before but with S, T ∈ LRS
C (n, kω1). We already know

that U ∈ L̃C(n, kω1), so to conclude that U ∈ LRS
C (n, kω1) we must show that if U1 = 1

then Uk < 2n. Well, suppose without loss of generality that U1 = min{S1, T1} = S1 =

1. If Uk = Sk, then we have Uk = Sk < 2n, and we are done. If Uk = Tk, then we

have Uk = Tk ≤ Sk < 2n, and we are done. Either way, U ∈ LRS
C (n, kω1). Similarly

see that R := (min{Si, Ti})ki=1 = S ∨ T ∈ L(n)×k also resides in LRS
C (n, kω1). This

completes the closure arguments for L̃C(n, kω1), LMol
C (n, kω1), and LRS

C (n, kω1).

Let X := min(L(n)×k) = (2n, 2n, . . . , 2n) and Y := max(L(n)×k) = (1, 1, . . . , 1),

which are also respectively the unique minimal (maximal) element of L̃C(n, kω1),

LMol
C (n, kω1), and LRS

C (n, kω1). To prove that L̃C(n, kω1) is full-length in L(n)×k and

that LMol
C (n, kω1) and LRS

C (n, kω1) are full-length in L̃C(n, kω1), it suffices to find a path

from X up to Y that stays entirely within L̃C(n, kω1), LMol
C (n, kω1), and LRS

C (n, kω1).

We do so as follows: In X, first change all 2n’s to (2n−1)’s, working from the leftmost
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entry of X to the rightmost. In the same way change all (2n−1)’s of the resulting one-

rowed tableau to (2n − 2)’s, again working from left to right. Continue this process

until obtaining a one-rowed tableau of 2’s. Change these 2’s to 1’s from left to right,

thus arriving at Y . Thus we see that L̃C(n, kω1), LMol
C (n, kω1), and LRS

C (n, kω1) have

the same length as L(n)×k and are therefore full-length (distributive) sublattices.

With respect to the edge coloring inherited from L(n)×k, each of these distributive

sublattices is diamond-colored.

Theorem 3.2 Let L be any one of L̃C(n, kω1), LRS
C (n, kω1), or LMol

C (n, kω1). Then:

(1) If T = (T1, . . . , Tk) is a one-rowed tableau from L, we have

wt(T ) =
(

#(T, 1)−#(T, 2) + #(T, 2n− 1)−#(T, 2n), . . . ,#(T, i)−#(T, i+ 1)

+ #(T, 2n− i)−#(T, 2n+ 1− i), . . . ,#(T, n− 1)−#(T, n)

+ #(T, n+ 1)−#(T, n+ 2),#(T, n)−#(T, n+ 1)
)
.

(2) L is Cn-structured.

(3) There exists a weight-preserving bijection ϕ : LRS
C (n, kω1) −→ LMol

C (n, kω1), so

that

WGF(LRS

C (n, kω1); z1, z2, . . . , zn) = WGF(LMol

C (n, kω1); z1, z2, . . . , zn).

Moreover, RGF(LRS
C (n, kω1); q) = RGF(LMol

C (n, kω1); q) =

 2n− 1 + k

k


q

.

Proof. We begin with a proof of (1), so take T ∈ L as presented there. Assume at

the moment that 1 ≤ i < n. In order to get an edge with color i below T , an entry

in our one-rowed tableau must change from i to i + 1 or from 2n − i to 2n + 1 − i.

This change-in-entry would decrease the rank by one but would increase the depth

by one. To get to the top of the i-component, all (2n + 1 − i)-entries from T can

be made into (2n− i)-entries, and then all (i+ 1)-entries can be made into i-entries.

Similarly, to get to the bottom of the i-component, all i-entries become (i+1)-entries,

and then (2n− i)-entries become (2n+ 1− i)-entries. With these moves performed as

indicated, there is no violation of admissibility. So, ρi(T ) is the number of i-entries
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plus (2n−i)-entries, and δi(T ) is the number of (i+1)-entries plus (2n+1−i)-entries.

Thus, we have that

ith-coordinate of wt(T ) = ρi(T )− δi(T )

=

(
#i′s+ #(2n− i)′s

)
−
(

#(i+ 1)′s+ #(2n+ 1− i)′s
)

=

(
#i′s−#(i+ 1)′s

)
+

(
#(2n− i)′s−#(2n+ 1− i)′s

)
(3.0.1)

When i = n, use similar reasoning to see that ρn(T ) is the number of n-entries

and δn(T ) is the number of (n+ 1)-entries. Thus,

nth-coordinate of wt(T ) = ρn(T )− δn(T )

= #n′s−#(n+ 1)′s

(3.0.2)

Therefore, wt(T ) can be calculated in terms of its entries as indicated in part (1)

of the theorem statement.

For (2), let A be the Cartan Matrix for the finitary GCM graph Cn. Consider an

edge S
i→ T . For convenience, we let mj(X) := ρj(X) − δj(X) for any color j and

any tableau X. We wish to show that mj(T )−mj(S) = (i, j)-entry of A if i 6= j.

We consider four separate cases: (i.) |i− j| ≥ 2; (ii.) |i− j| = 1, i < n, and j < n;

(iii.) i = n− 1 and j = n; and (iv.) i = n and j = n− 1.

Proof of (i.): Suppose |i− j| ≥ 2, where i is the color-component and j is the j-

coordinate of wt(t). T is formed from S by changing one entry of S. This change

will affect only the i-coordinate, (i − 1)-coordinate, or (i + 1)-coordinate in wt(T ).

It goes to say that if i = 1, it will affect only i and (i + 1)-coordinates and if i = n,

it will affect only i and (i− 1)-coordinates. Because i 6= j and |i− j| ≥ 2, it can be

seen that mj(T ) = mj(S). Hence, mj(T )−mj(S) = 0.

Proof of (ii.): Suppose |i− j| = 1, i < n, and j < n.
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Consider j = i− 1.

mi−1(T )−mi−1(S) =
[
ρi−1(T )− δi−1(T )

]
−
[
ρi−1(S)− δi−1(S)

]
= ρi−1(T )− δi−1(T )− ρi−1(S) + δi−1(S)

=
[
#(i− 1)′s+ #(2n− (i− 1))′s

]
−
[
#i′s+ #(2n− (i− 2))′s

]
−
[
#(i− 1)′s+ #(2n− (i− 1))′s

]
+
[
#i′s+ #(2n− (i− 2)′s− 1

]
= −1

(3.0.3)

The one entry of i or 2n− i+ 2 changing will decrease the depth of S at it’s (i− 1)-

component by one.

Similarly, consider j = i+ 1.

mi+1(T )−mi+1(S) =
[
ρi+1(T )− δi+1(T )

]
−
[
ρi+1(S)− δi+1(S)

]
= ρi+1(T )− δi+1(T )− ρi+1(S) + δi+1(S)

=
[
#(i+ 1)′s+ #(2n− (i+ 1))′s

]
−
[
#(i+ 2)′s+ #(2n− (i+ 2))′s

]
−
[
#(i+ 1)′s+ #(2n− (i+ 1))′s+ 1

]
+
[
#(i+ 2)′s+ #(2n− (i+ 2)′s

]
= −1

(3.0.4)

This time, the entry change will increase the rank of S at it’s (i + 1)-component by

one.

Proof of (iii.): Suppose i = n− 1 and j = n.
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mn(T )−mn(S) =
[
ρn(T )− δn(T )

]
−
[
ρn(S)− δn(S)

]
= ρn(T )− δn(T )− ρn(S) + δn(S)

= #n′s−#(n+ 1)′s−
(
#n′s+ 1

)
+ #(n+ 1)′s

= −1

(3.0.5)

An (n− 1)-entry will change to n. So, the rank of S at it’s n-component will increase

by 1.

Proof of (iv.): Suppose i = n and j = n− 1.

mn−1(T )−mn−1(S) =
[
ρn−1(T )− δn−1(T )

]
−
[
ρn−1(S)− δn−1(S)

]
= ρn−1(T )− δn−1(T )− ρn−1(S) + δn−1(S)

=
[
#(n− 1)′s+ #(n+ 1)′s

]
−
[
#n′s+ #(n+ 2)′s

]
−
[
#(n− 1)′s+ #(n+ 1)′s+ 1

]
+
[
#n′s− 1 + #(n+ 2)′s

]
= −2

(3.0.6)

An n-entry will change to n+1. The rank of S at it’s (n−1)-component will increase

by 1, and the depth of S at it’s (n−1)-component will decrease by 1. This completes

the analysis of the last of our four cases and, thus, completes the proof of part (2) of

the theorem statement.

For (3), we produce a bijection LMol
C

∼←→ LRS
C as follows.

(i.) First, we define ψ : LMol
C (n, kω1) → LRS

C (n, kω1). In particular, for a tableau T

from LMol
C (n, kω1), build ψ(T ) as follows: where entries in T transition from

≤ n to ≥ n+ 1 , insert an n+ 1 n pair each time a 1 · · · 2n pair

is removed. Repeat this until there are no 1 · · · 2n pairs left.
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(ii.) Second, we define ϕ : LRS
C (n, kω1) → LMol

C (n, kω1). Build ϕ(T ) from T as fol-

lows: each n+ 1 n is replaced with a 1 · · · 2n and repeated until no

n+ 1 n ’s are left.

It is evident that ϕ◦ψ : LMol
C → LMol

C is the identity mapping, as well as ψ◦ϕ : LRS
C →

LRS
C . Therefore, each of ψ and ϕ is a bijection, with ϕ−1 = ψ and ψ−1 = ϕ. Observe

that mi(ψ(T )) = mi(T ) when 1 < i < n because none of the entries 2 through n− 1

and n + 2 through 2n − 1 are affected by ψ. Similarly, see that mi(ϕ(T )) = mi(T )

for such i. So, our only potential concern is when i = 1 or i = n.

Now, when i = 1, it can be seen that

(#1′s−#2′s) + (#(2n− 1)′s−#(2n)′s) = (#1′s− 1−#2′s) + (#(2n− 1)′s− (#(2n)′s− 1))

= (#1′s+ 1−#2′s) + (#(2n− 1)′s− (#(2n)′s+ 1)).

(3.0.7)

And when i = n, it can be seen that

#n′s−#(n+ 1)′s = (#n′s+ 1)− (#(n+ 1)′s+ 1)

= (#n′s− 1)− (#(n+ 1)′s− 1).

(3.0.8)

Thus, mi(ψ(T )) = mi(T ) when i = 1 or when i = n. Similarly, mi(ϕ(T )) = mi(T )

when i = 1 or when i = n. Therefore, wt(ψ(T )) = wt(T ) and wt(ϕ(T )) = wt(T ). So,

ψ and ϕ are weight-preserving. This completes the proof of part (3) of the theorem.
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Chapter 4

Some algebraic context

In this chapter, we further (but briefly) discuss some of the connections between our

type C one-rowed lattices and various algebraic structures. This discussion mostly

consists of some follow-up to various claims and comments throughout the thesis

relating to the potential of our type C one-rowed lattices as models for certain type C

Weyl symmetric functions. For a more thorough treatment of these ideas, see [Don3].

Here, we being with a recapitulation of some general principles from [Don3] that is

rooted in language from Chapters 1 and 2 above.

For a type Xn finitary GCM graph, the associated Weyl group W (Xn) is finite

and there exist non-constant Xn-symmetric functions. Moreover, the ring/Z-module

of Xn-symmetric functions has as a Z-basis a distinguished set of Weyl symmetric

functions denoted {χXn

λ
} indexed by the dominant weights in Λ. The latter have been

termed Weyl bialternants because they can be expressed as quotients of certain sign-

alternating functions. In type A, the Weyl bialternants are famously known as the

“Schur functions” of classical symmetric function theory, so each χXn

λ
can be regarded

as an Xn-analog of a Schur function.

Here we briefly explore some of the many natural interactions between Weyl sym-

metric functions and order-theoretic / enumerative combinatorics. The following
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demonstrations will showcase the importance of the Xn-structure property. To be-

gin, let us suppose that R is an Xn-structured poset whose i-components are rank

symmetric. For a fixed color i, label the distinct i-components C(i)
1 , . . . , C(i)

ki
, and re-

gard R to be the disjoint sum C(i)
1 ⊕ · · · ⊕ C

(i)
ki

. Now let τ
(i)
j be some pairing of the

elements within an i-component C(i)
j such that δi(τ

(i)
j (x)) = ρi(x) for each x ∈ C(i)

j ,

which is possible since C(i)
j is rank symmetric. For such x, observe that since R is

Xn-structured we have wt(τ
(i)
j (x)) = wt(x)− (ρi(x)−δi(x))αi. Now let τ (i) : R −→ R

be the bijection defined by τ (i)(x) := τ
(i)
j (x) when x ∈ C(i)

j . Then:

Si.WGF(R; z1, . . . , zn) = Si.
∑
x∈R

zwt(x)

=
∑
x∈R

Si.z
wt(x)

=
∑
x∈R

zSi(wt(x))

=
∑
x∈R

zwt(x)−(ρi(x)−δi(x))αi

=
∑

τ (i)(x)∈R

zwt(τ
(i)(x))−(ρi(τ

(i)(x))−δi(τ (i)(x)))αi

=
∑
x∈R

zwt(τ
(i)(x))−(ρi(τ

(i)(x))−δi(τ (i)(x)))αi

=
∑
x∈R

zwt(τ
(i)(x))+(ρi(x)−δi(x))αi

=
∑
x∈R

zwt(x)−(ρi(x)−δi(x))αi+(ρi(x)−δi(x))αi

=
∑
x∈R

zwt(x)

= WGF(R; z1, . . . , zn)

Since the preceding computation works for any color i, we conclude that

WGF(R; z1, . . . , zn) is W (Xn)-invariant.

Suppose now that an Xn-structured poset R is connected. For s, t ∈ R, suppose

that wt(s) = wt(t). Let (s = x0,x1, . . . ,xp = t) be a sequence of elements in R
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such that for 1 ≤ j ≤ p there is a color ij for which either xj−1
ij→ xj or xj

ij→

xj−1. We think of this sequence as a path P from s to t. For a fixed color i, let

ui := |
{
j ∈ {1, . . . , p} |xj−1

i→ xj

}
|, which is, informally speaking, the number of

times an ‘upward’ edge of color i appears within our path P . Similarly let di :=

|
{
j ∈ {1, . . . , p} |xj

i→ xj−1

}
| be the number of times a ‘downward’ edge of color i

appears in P . From the Xn-structure property, we have

wt(s) +
n∑
i=1

(ui − di)αi = wt(t).

Since wt(s) = wt(t), then
∑n

i=1(ui− di)αi = 0, where the latter is the zero vector. It

is easy to check that the Cartan matrix for any finitary GCM graph is invertible and

hence its rows are linearly independent. This forces the scalar coefficient ui − di to

be 0 for each i, i.e. ui = di for each i. Thus s and t have the same rank within R. In

particular, it is this reasoning allows us to deduce that LMol
C (n, kω1) and LRS

C (n, kω1)

have the same rank generating function given that both are Cn-structured and that

there is a one-to-one weight-preserving correspondence between their elements.

In general, if R is Xn-structured and WGF(R; z1, . . . , zn) is the Xn-Weyl bialternant

corresponding to some dominant weight λ, then we say R is a splitting poset for χXn

λ
.

When such an R is connected, then it can be seen that R is rank symmetric and rank

unimodal and that its rank generating function RGF(R; q) is a quotient of products

of q-integers, cf. Proposition 4.7 of [Don3].

With these general notions in mind, we would like to place the results of this thesis

within a programmatic context. The Weyl symmetric functions {χXn
ωk
}k∈I associated

to the fundamental weights {ωk}k∈I are called elementary Weyl symmetric functions;

in type An, these are just the elementary symmetric functions of classical symmetric

function theory. Splitting modular (in fact distributive) lattices for the elementary

Weyl symmetric functions have been found for types A, B, and C. These lattices seem
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to be the “right” models in terms of their interrelationships, extremal properties, etc

(see [Don1] for a more precise development of these notions). Notably, however,

such models for the type D elementary Weyl symmetric functions have not been

found. This is perhaps the most prominent outstanding problem in the nascent

theory of splitting modular/distributive lattices espoused in [Don3]. See Table 1.1 of

that paper for a comprehensive summary of what is currently known about splitting

modular/distributive lattices.

In the so-called classical cases – where X is one of A, B, C, or D – the Weyl

bialternants {χXn
kω1
}k=1,2,3,... are called one-rowed Weyl symmetric functions because

of their close connections to certain one-rowed tableaux. Splitting modular (in fact

distributive) lattices for the one-rowed Weyl-symmetric functions that seem “right”

(in the above sense of this word) have been found for types A and B. In type A, these

are just the type A one-rowed lattices of Chapter 2. In type B, these are the Molev

and RS one-rowed lattices from [DLP1] and presented above in Chapter 2. This thesis

proposes what seems to be the right one-rowed solutions in type C, namely the Molev

and RS one-rowed lattices of Chapter 3. There exist distributive lattice models that

are type D analogs of the type B and C Molev one-rowed lattices; another prominent

outstanding problem is to find type D lattices that analogize the RS one-rowed lattices

of types B and C.

Note, however, that we have not formally demonstrated in this thesis that the

Molev and RS type Cn one-rowed lattices are splitting distributive lattices for the

one-rowed Weyl bialternants {χCn
kω1
}k=1,2,3,..., nor have we formally established here

that their weight-generating functions are W (Cn)-invariant. But consider the follow-

ing: It is observed in [ADLP1] that LMol
C (n, kω1) is (to borrow some Lie theoretic

language from §4 of [Don3]) a supporting graph for the irreducible representation of

the simple complex symplectic Lie algebra of type Cn whose dominant weight is kω1.

It follows immediately from Proposition 4.18 of [Don3] that LMol
C (n, kω1) is a splitting
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distributive lattice for χCn
kω1

. Then from our main result (Theorem 3.2) it follows that

LRS
C (n, kω1) is also a splitting distributive lattice for χCn

kω1
.

Still, we are interested in finding a proof of this splitting result that does not

depend on Lie algebra representation theory. Such non-Lie-theoretic approaches can

be found in §8 of [Don3] (which establishes splitting results for type B, C, and D

Weyl bialternants whose highest weight is a multiple of a ‘right-end-node’ fundamen-

tal weight), in [ADLP2] (which uniformly establishes splitting results for all X2-Weyl

symmetric functions when X ∈ {A,C,G}), and in Chapter 5 of [Beck] (which estab-

lishes splitting results for the elementary Weyl symmetric functions in type B). Each

of these foregoing results is an application of Theorem 8.1 of [Don3]. To facilitate

such a proof for our type C one-rowed lattices, a careful analysis of the i-components

of LMol
C (n, kω1) and LRS

C (n, kω1) is required. Based on our investigation of cases for

small n and k, we believe that all i-components of the type C one-rowed lattices are

products of chains. This is a desirable property, as it implies rank symmetry of all

i-components and satisfies one of the criteria of Theorem 8.1 of [Don3]. However, in

type B, there exists at least one n-component of LRS
B (n, kω1) that is not a product of

chains whenever k ≥ 2; when n = k = 2, one can observe this phenomenon directly

by inspecting LRS
B (2, 2ω1) in Figure 1.2 from Chapter 1 above. So, our tentative claim

above – that all i-components of LMol
C (n, kω1) and LRS

C (n, kω1) are products of chains

– is not automatic.

Next, we concretely illustrate some the main ideas of this thesis using the finitary

GCM graph C2. The Cartan matrix for C2 is

 2 −1

−2 2

. Then α1 is the row vector

(2,−1) and α2 is the row vector (−2, 2). We identify the lattice of weights Λ with

the Z-module Z⊕ Z, so weights are just pairs of integers.

Now S1 : Λ −→ Λ is defined as S1(µ) := µ − aα1 when µ = (a, b). So, S1(a, b) =

(a, b)− a(2,−1) = (−a, a+ b), which is exactly the NNG node-firing move associated

with node γ1 of the C2 GCM graph, cf. Figure 2.2. Similarly S2 : Λ −→ Λ is defined
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as S2(µ) := µ − bα2 when µ = (a, b). So, S2(a, b) = (a, b) − b(−2, 2) = (a + 2b,−b),

which is exactly the NNG node-firing move associated with node γ2 of the C2 GCM

graph. What follows below are further concrete viewpoints of S1 and S2.

S1 =

−1 0

1 1

 S2 =

1 2

0 −1


−1 0

1 1

 ·
a
b

 =

 −a
a+ b


1 2

0 −1

 ·
a
b

 =

a+ 2b

−b


With these matrices, it is easy to check that S2

1 = S2
2 = ε and S1S2S1S2 = S2S1S2S1.

Moreover, here is how S1 and S2 act on Laurent monomials:

S1.(z
a
1z

b
2) = z−a1 za+b

2

S2.(z
a
1z

b
2) = za+2b

1 z−b2
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The 8-element dihedral group D4 has the following well-known presentation by

(abstract) generators s1, s2 and relations:

D4
∼= 〈s1, s2 | s2

1 = s2
2 = ε, s1s2s1s2 = s2s1s2s1〉.

Its elements are {ε, s1, s2, s1s2, s2s1, s1s2s1, s2s1s2, s1s2s1s2}. So our strategy for

showing that W (C2) ∼= D4 is to show that our S1 and S2, viewed as matrices, satisfy

the above D4 relations and generate at least 8 distinct 2×2 matrices when we consider

all possible products of our S1’s and S2’s. The computations below confirm that we

get at least 8 distinct matrices, as desired:

r
γ1

r
γ2

- ��
a b

(a) ε(a, b) = (a, b)

r
γ1

r
γ2

- ��
−a a+ b

(b) S1(a, b) = (−a, a+ b)

r
γ1

r
γ2

- ��
a+ 2b −b

(c) S2(a, b) = (a+ 2b,−b)

r
γ1

r
γ2

- ��
−a− 2b a+ b

(d) S1S2(a, b) = (−a− 2b, a+ b)

r
γ1

r
γ2

- ��
a+ 2b −a− b

(e) S2S1(a, b) = (a+ 2b,−a− b)

r
γ1

r
γ2

- ��
−a− 2b b

(f) S1S2S1(a, b) = (−a− 2b, b)

r
γ1

r
γ2

- ��
a −a− b

(g) S2S1S2(a, b) = (a,−a− b)

r
γ1

r
γ2

- ��
−a −b

(h) S1S2S1S2(a, b) = (−a,−b)

On the following pages, we showcase some small examples of our type C one-rowed

lattices along with some weight-generating function calculations.
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Figure 4.0.2: L̃C(2, 2ω1)
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WGF(L̃C(2, 2ω1); z1, z2) is W (C2)-invariant.
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WGF(L̃C(2, 3ω1); z1, z2) is W (C2)-invariant.
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Chapter 5

A gallery of type C examples

1

2

(a) LMol
C (1, 1ω1)

1

2

(b) LRS
C (1, 1ω1)

1

2

(c) L̃C(1, 1ω1)

Figure 5.0.1: Molev, Reiner-Stanton, and Tilde graphs with n = k = 1.
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(b) LRS
C (2, 1ω1)
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(c) L̃C(2, 1ω1)

Figure 5.0.2: Molev, Reiner-Stanton, and Tilde graphs with n = 2 and k = 1.



45

1

2

3

4

5

6

(a) LMol
C (3, 1ω1)

1

2

3

4

5

6

(b) LRS
C (3, 1ω1)

1

2

3

4

5

6

(c) L̃C(3, 1ω1)

Figure 5.0.3: Molev, Reiner-Stanton, and Tilde graphs with n = 3 and k = 1.
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(c) L̃C(4, 1ω1)

Figure 5.0.4: Molev, Reiner-Stanton, and Tilde graphs with n = 4 and k = 1.
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(c) L̃C(2, 2ω1)

Figure 5.0.5: Molev, Reiner-Stanton, and Tilde graphs with n = 2 and k = 2.
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(c) L̃C(3, 2ω1)

Figure 5.0.6: Molev, Reiner-Stanton, and Tilde graphs with n = 3 and k = 2.
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(c) L̃C(4, 2ω1)

Figure 5.0.7: Molev, Reiner-Stanton, and Tilde graphs with n = 4 and k = 2.
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Figure 5.0.8: Molev, Reiner-Stanton, and Tilde graphs with n = 2 and k = 3.
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Figure 5.0.9: Type C lattices for Molev and Reiner-Stanton with n = k = 3.
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Figure 5.0.10: Molev, Reiner-Stanton, and Tilde graphs with n = k = 1.
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Figure 5.0.11: Molev, Reiner-Stanton, and Tilde graphs with n = 2 and k = 1.
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Figure 5.0.12: Molev, Reiner-Stanton, and Tilde graphs with n = 3 and k = 1.
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Figure 5.0.13: Molev, Reiner-Stanton, and Tilde graphs with n = 4 and k = 1.
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Figure 5.0.14: Molev, Reiner-Stanton, and Tilde graphs with n = k = 2.



55

1 1

1 2

2 2 1 3

2 3 1 4

3 3 2 4 1 5

1 63 4 2 5

4 4 3 5 2 6

4 5 3 6

5 5 4 6

5 6

6 6

1

1 2

2 1 3

2 3 1 2

13 2 2 1

13 2 2 1

2 3 1 2

2 1 3

1 2

1

(a) LMol
C (3, 2ω1)

1 1

1 2

2 2 1 3

2 3 1 4

3 3 2 4 1 5

4 3 3 4 2 5

4 4 3 5 2 6

4 5 3 6

5 5 4 6

5 6

6 6

1

1 2

2 1 3

2 3 1 2

3 3 2 2 1

3 3 2 2 1

2 3 1 2

2 1 3

1 2

1

(b) LRS
C (3, 2ω1)

1 1

1 2

2 2 1 3

2 3 1 4

3 3 2 4 1 5

4 3 1 63 4 2 5

4 4 3 5 2 6

4 5 3 6

5 5 4 6

5 6

6 6

1

1

2

2

3

3

2

2

1

1

2

1

3 1

3

2

12 1

11

2

3

2

3 2

2 2

1

3

3

1

(c) L̃C(3, 2ω1)

Figure 5.0.15: Molev, Reiner-Stanton, and Tilde graphs with n = 3 and k = 2.
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Figure 5.0.16: Molev and Reiner-Stanton graphs with n = 4 and k = 2.
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Figure 5.0.16: Tilde graph with n = 4 and k = 2.
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Figure 5.0.17: Molev, Reiner-Stanton, and Tilde graphs with n = 2 and k = 3.
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Figure 5.0.18: Molev, Reiner-Stanton, and Tilde graphs with n = k = 2.
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Figure 5.0.19: Molev, Reiner-Stanton, and Tilde graphs with n = 3 and k = 2.
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Figure 5.0.20: Molev, Reiner-Stanton, and Tilde graphs with n = 4 and k = 2.
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Figure 5.0.21: Molev, Reiner-Stanton, and Tilde graphs with n = 2 and k = 3.
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