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2.2 Edo Japan and the Jinkō-ki . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Development and Globalization of Sangaku . . . . . . . . . . . . . . . 7

3 Fundamentals of Geometry 12
3.1 Neutral Geometry and the Parallel Postulates . . . . . . . . . . . . . 12
3.2 Regarding Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Euclidean Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Elliptic Parallel Postulate . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Hyperbolic Parallel Postulate . . . . . . . . . . . . . . . . . . . . . . 18
3.6 On the Pythagorean Theorem . . . . . . . . . . . . . . . . . . . . . . 21
3.7 Law of Cosines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.8 Law of Sines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.9 Congruence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Examining Sangaku Outside of Euclid 25
4.1 Sangaku only for Euclid . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 What Sangaku Work Then? . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

References 41

i



List of Figures
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Abstract

When the country of Japan was closed from the rest of the world from 1603 until

1867 during the Edo period, the field of mathematics developed in a different way

from how it developed in the rest of the world. One way we see this development

is through the sangaku, the thousands of geometric problems hung in various Shinto

and Buddhist temples throughout the country. Written on wooden tablets by people

from numerous walks of life, all these problems hold true within Euclidean geometry.

During the 1800s, while Japan was still closed, non-Euclidean geometries began to

develop across the globe, so the isolated nation was entirely unaware of these new

systems. Thus, we will explore the sangaku in two of the other well-known systems,

namely the neutral and hyperbolic geometric systems. Specifically, we will highlight

how these traditionally-solved problems change under the varying definitions of line

parallelism.

iii
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Chapter 1

Introduction

What influences the way in which we view mathematics? Are there any social con-

structs that indicate our understanding? That is, is there a reason why our modern

interpretation of mathematics is flooded with white, European men and what they

discovered? Because of this, we tend to ignore results found from anywhere else

from the world and anyone other than white men. What happens when we erase

this presupposition – are there new findings? Do we perhaps even find a different

understanding from mathematics, aside from just a subject that seems unreasonably

focused in school?

One explanation as to what influences of interpretation of math can be found

when we examine the amount of cross-cultural encounters a society has. The amount

of cross-cultural encounters a society has is correlated to the perspective of math.

We can see this when examining the 1700 and 1800s and the development of mathe-

matics at this time. The European mathematics was influenced heavily by relatively

recent math found by the Islamic Golden Age, such as the concept of zero. algebra,

or different astrological findings. However, there was one country isolated from the

world that had a Chinese foundation of math, Japan. From the early 1600s up until

the mid 1800s, during what is now called the Edo period, Japan was isolated from
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the world, as Fukagawa and Rothman mention in Sacred Mathematics [4]. Because

of this isolation, Japanese culture was allowed to grow and expand in truly unique

ways, ways which are visible through the art produced during this period. One such

type of artistic expression is the sangaku (also written san gaku, which literally trans-

lates as ‘calculation tablets’), various tablets found at Shinto shrines and Buddhist

temples. Combining art and geometry, these tablets offer us a direction to answering

the aforementioned questions.

Japan and Europe developed their mathematics in vastly different ways. Japan

took a more artistic approach to mathematics, seen in the development of wasan –

traditional Japanese mathematics – and the sangaku tablets themselves. However,

Europe took a limited artistic approach to mathematics during the same time. From

the Father of Calculus to Euler, math was used to explain natural phenomena, such

as gravity or analyzing numbers. Furthermore, Europe started to examine Euclid’s

Postulates in new ways during the 1800s, developing different parallel line cases and

non-Euclidean geometries [13]. What if both wasan and European math grew to-

gether, allowing more people to not only learn more about math, but also to learn it

in different ways? We take a look into this hypothetical by combining sangaku and

non-Euclidean geometries.

We will first discuss the intricacies of wasan in Chapter 2, in order to lay the

groundwork for the context of the tablet problems. In Chapter 3, we will take a look

at the non-Euclidean geometric developments that occurred outside Japan during the

Edo period. Lastly, in Chapter 4 we will combine the contents of our previous work

to solve different sangaku problems in non-Euclidean geometries, with a specific focus

on the Hyperbolic Poincaré Disk model.
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Chapter 2

What is Sangaku?

“There is good when obeying the soul of mathematics and suffering when not.” This

quote from Takebe Katahiro’s book Fukyuu tetsujustu (Inductive Mathematics) as

stated in [10] summarizes the Edo perspective on math. During the Edo period (1603-

1868 CE), math was recreational, synonymous to our modern ideas of music, art,

sports, puzzles, board games, and even some video games -– depending on what type

is being played, of course. Because of this, many Japanese people were mathematically

literate, being able to use the abacus and to multiply numbers. The origin of Edo

Japanese math, called wasan, originated from Yoshida Mitsuyoshi’s book, Jinkō-ki,

written in 1627 near the start of the Edo period. This book, which we will discuss the

content shortly, was so monumental and influential for the nation that almost every

single family owned a copy of it [4]. As mathematics during the Edo culture was

seen as a recreational activity, those living in Japan simply used it to pass the time,

gaining some mathematical knowledge in the process. As with many other things,

“just because you do not need something in life, it does not mean there is no point in

doing it,” [10] such is the philosophy of studying mathematics during the Edo period

in Japan. For more on the history of Edo Japan, please watch “Japan: Memoirs of a

Secret Empire” [3] to gain an understanding of society during the era.



2.1. Pre-Edo Math 4

2.1 Pre-Edo Math

In order to further understand the importance of the Jinkō-ki, we need to first un-

derstand the build up to the Jinkō-ki, the start of traditional Japanese mathematics.

In the 700s CE during the Nara period, China and Japan had numerous interactions

with each other, which led to many Chinese ideologies travelling over to Japan. Chi-

nese math books were the most influential items in the development of the Japanese

understanding of math. Among all the early Chinese books, the Zhou bi suan jing,

(The Arithmetical Classic of the Gnomon and the Circular Path of Heaven), which

dealt heavily in astronomy and dating the calendar, was the earliest written — com-

pleted around first century BCE, as Swetz and Katz share [11]. The importance of

the Zhou bi was its inclusion of fractions, the discussion of multiplication and divi-

sion, and even the implicit use of square roots [4]. Another valuable Chinese book for

Japanese math was the Jiu zhang Suanshu (Nine Chapter on the Mathematical Art),

which contained well over 200 problems relating to mathematical fields such as sur-

veying, taxation, and engineering. The methodology of the Jiu zhang Suanshu also

implemented fractions, in conjunction with geometry, arithmetic progression, and the

Pythagorean Theorem. Naturally, as these books entered Japan, they were used, but

nothing was expanded until Yoshida wrote the Jinkō-ki.

One of the more impressive developments that came to fruition from the Chinese

works was the creation of the San Hakase, the Department of Arithmetic Intelligence,

established during the Nara period. As the name suggests, this agency dealt with

many arithmetic happenstances that occurred in normal life for the Japanese people;

they helped farmers, especially with measuring fields, and even helped levy taxes.

The Department consisted of directors, subdirectors, officers, clerks, and assistants,

with the a grand total of 1,330 people involved. Separated into seven groups, the

San Hakase toured villages to ensure taxes were paid. With each position came a

different allocation of sake, rice, and salt, but despite the arithmetic chore it was to
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perform this caluation for each individual, each person received the correct amounts.

This was the extent of Japanese math up until the 1600s with the rise of the Edo

period.

2.2 Edo Japan and the Jinkō-ki

Traditional Japanese math began its development as the Edo period arrived. Hideyoshi

Toyotomi, who was allied originally with the first shogun of the era Tokugawa Ieyasu,

decided to invade Korea after unifying Japan in 1591. As Japanese math had re-

mained stagnant up until this point, invading Korea gave Japan a new mathematic

instrument, the abacus, known as the soroban in Japanese. This instrument’s popular-

ization was aided by Mōri Shigeyoshi, the first identifiably Japanese mathematician,

who owned the Chinese book Suanfa Tong Zong (Systematic Treatise on Arithmetic).

He soon thereafter wrote Warizansyo (Division Using Soroban), finishing the book

by 1622. Although he had great knowledge of the Chinese book, Mōri was not the

only mathematician to study the Suanfa Tong Zong ; throughout the 1620s, Yoshida

Mitsuyoshi closely studied the book, eventually modifying the problems and adding il-

lustrations. This book, the Jinkō-ki (Large and Small Numbers) came to be in 1627,

the first Japanese-published complete mathematics book. This publication marks

the point where traditional Japanese mathematics takes off, developing into wasan.

Without Mōri and Yoshida, it would not have developed in the way that it did, as

Yoshida quickly became a student of Mōri’s and just as rapidly learned of everything

his teacher could inform. Wasan, thanks to the sakoku decree, was allowed to develop

in truly unique ways, which helped to differentiate from the European mindset.

As a book, Yoshida’s Jinkō-ki not only represents wasan, but it also is a glimpse

into the Edo era: the second edition was printed in four colors and shows the artistic

expression found from the period. This chosen coloration aided immensely in its
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rapid spread throughout the country, since the book was visually appealing. What

exactly made Jinkō-ki so monumental? As most introductory math books nowadays

do, the Jinkō-ki begins by introducing the number system, increasing in ones, tens,

hundreds, thousands, even denominations up to 1016. One caveat, though, was that

the term changes on each increased digit location. For example, in the Edo book, oku

represented 100,000, chō denoted 1,000,000, etc. In comparison to our modern system,

which refers to each group of numbers as, for example, thousands, ten thousands, and

hundred thousands, the numbers used in the Jinkō-ki were not set up as jū sen (ten

thousand) but instead understood as its own entitity, man. In traditional Japanese

mathematics, we would not under 10,540 as ten thousand five hundred forty, but

instead we would view it as one man five hyaku four jū. Similarly, 4,231 is four sen

two hyaku three jū one. Edo Japanese people did not view a hundred thousand as a

hundred thousands, but instead as a singular hundred thousand. The same was true

for decimals, where each digit placement was assigned a different name.

Following the number system, Yoshida wrote about different ways of measuring:

length, weight, area, volume, and even special rulers, for both cloth and carpentry, as

well as identifying important weights of gold and silver. All of these measurements

would have been useful for the average farmer, worker, or merchant. Jinkō-ki even

discusses multiplication and division, the latter of which was extremely useful when

working alongside an abacus. The book concludes with applications to the real world

and challenge problems to enhance one’s mathematical abilities. Idai are challenge

problems where the author gave no answer to entice people to solve for themselves,

but they were a common feature of arithmetic books. As we will discover shortly,

sangaku emulated this, producing a method called idai keishō. Idai keishō is the main

idea from where sangaku comes. Someone would create an “unsolved” problem for

someone else to prove, but the author would provide the steps or the formula used in

order to provide a small amount of guidance.
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Even within the Jinkō-ki, idai keishō aided people with arithmetic, but algebra

was a different story entirely. Algebra problems were only solvable using the sangi,

still in use despite its initial Japanese use in the 700s, and Chinese methods called

tianyuanshu, or “heavenly element.” Enter Sawaguchi Kazuyuki’s Kokon sanpōki (Old

and New Mathematics), written in 1671. This book also engaged in idai keishō,

presenting fifteen multivariate problems at then end. The answers were not known

until 1674, when Seki Takakazu wrote Hatsubi sanpō (Detailed Mathematics), and

suddenly the answers for all fifteen problems were given. Seki used a special notation

called bōshohō (point counting method), where he used alphanumeric symbols to solve

multivariate problems, therefore creating a long hand calculation, hissan. See Figure

2.2.1 for a visualization of bōshohō using wasan. Both the implementation of hissan

and bōshohō gave Japan the ability to move past Chinese math and truly develop and

advanced wasan. Seki was such a talented mathematician that he possibly discovered

the Bernoulli numbers before Jacob Bernoulli did, as propositioned in Wasan [10].

Because of his mathematical prowess, Seki, as many other Japanese mathematicians of

the time did, had numerous protégés in school, many of whom started their own math

schools containing various levels, from an elementary school equivalent up to even

college level math. One notable student is Katahiro Takebe, who plainly described

the view wasan has on math in Fukyū testujutsu; “[t]here is good when obeying the

soul of mathematics and suffering when not.” [10]

2.3 Development and Globalization of Sangaku

Sangaku are visualizations of wasan and idai keishō, where people present findings for

the public to enjoy the math presented, to emulate the result, and to encourage others

to develop new sangaku. They were presented on an average of 153 cm by 69.4 cm

wood tablets and were typically hung in Buddhist temples and Shinto shrines. This
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Figure 2.2.1: Bōshohō from Sakabe Kohan’s Sanpo Tenzan Shinanroku [7].

tradition originated from the hanging of ema, the drawing of horses for deities as

many poor people could not afford to offer the deities an actual animal. Many people

even consider sangaku as mathematical ema, as they are offered in a similar fashion.
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Each problem on a sangaku, no matter the difficulty, followed a similar formula; first

was the question itself, followed by the answer, and the formula used completed the

individual problem. As with all idai keishō, the solving method was given so others

could get to the same conclusion and extrapolate upon the problem, creating a new

one. However, the sangaku were unique in that each tablet did not contain only one

problem; they would have a large variety of problems, of all difficulties. As many

were offered from schools called juku, there was no set theme, topic, or principle to

an individual sangaku tablet.

The lack of theme was aided by the demographics of class; different social classes

attended the juku. Often the samurai class with the equivalent of a masters’ degree

taught reading, writing, and the soroban, and even farmers attended at a low price

to know how to tend to their fields. About 80,000 juku were in Japan by the end of

the Edo period, so we can assume that math was widely known. A sangaku problem

proposed by a child could be located right next to a graduate level problem. The

content of a tablet was based on the establishment or person writing it, not so much

keeping certain topics together. Thus, mathematicians were not the only people to

create problems; children, women, everyone could create a sangaku if they so desired.

Both Irie Shinjun’s Katayama Hiko shrine sangaku and the Konnoh Hachimangu

shrine sangaku are surviving tablets and can be seen in Figure 2.3.1.

(a) Katayama Hiko Sangaku tablet
[4].

(b) Sangaku to Konnoh Hachimangu
shrine [5].

Figure 2.3.1: Two Sangaku tablets from the 1800s.
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We give most of our credit to modern day global recognition of sangaku to one

man, Yamaguchi Kanzan (1781-1850), a mathematician from Suibara who traveled

throughout the country to record numerous sangaku over the course of eleven years,

taking six journeys between the years 1817 and 1828. These journeys, appropriately

called “sangaku pilgrimages” were common during the 1800s. People would travel

around the country to learn more and contribute to the betterment of mathemat-

ics through idai keishō. How were these pilgrimages even that common; certainly,

travel, especially walking across a whole country, was not common, right? The op-

posite is true for the Edo period; travelling was the main interaction people had. In

fact, the shogun, who lived in the capital Edo, the namesake for the time period,

summoned all the daimyo, leaders of the prefectures, to the capital every other year.

Thus, this yearly travel to and from the city allowed for paths to develop, along

with sightseeing locations for commoners. Yamaguchi is one of our sole first-hand

accounts on sangaku, and in Chapter 7 of [4], we notice that he was well-known for

his mathematical prowess. His journal, which contains close to 700 pages, mentions

problems from eighty-seven tablets, of which only two survived, thanks to rotting or

other destruction; in fact, he tried to publish the journal as Syuyuu Snapō, (Travel

Mathematics). Although the book was never published, the original diary is a cul-

tural asset in Agano, even though Yamaguchi’s words have not been translated into

modern Japanese. Sacred Mathematics [4] shares his third pilgrimage, starting and

ending in Edo from 1820-1822.

Despite their cultural importance, sangaku never made their way to the global

view. In conjunction with the falling out of wasan after the Edo period, these tablets

dwindled in number over time, even if people still wrote and dedicated math problems

in the 1900s. The world’s first exposure to sangaku was in 1989 through Japanese

Temple Problems: San Gaku by David Pedoe and Fukagawa Rothman. Rosalie Hosk-

ing mentions in an article that this did not provide era-accurate solutions to the nu-
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merous sangaku problems shown [7]. She includes describing bōshohō in more detail,

defining certain rules, demarcations, and even solves a problem in the traditional

method, truly showing us a difference in mathematical ideology between the modern

day and Edo period Japan. As Hosking shares, “careful attention must be given to

finding and translating solutions to sangaku in the literature in order to accurately

represent and understand the methods used in Edo Japan” [7].
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Chapter 3

Fundamentals of Geometry

In this section, we will be discuss relevant geometric foundations, and differentiate

them based on which geometries the specific definition, theorem, or axiom falls under.

3.1 Neutral Geometry and the Parallel Postulates

Ever since Euclid published his Elements around 300 BCE, his 467 propositions of

planar and solid geometry both aided geometric developments and acted as the foun-

dation of geometry, with some of the propositions acting as axioms, as noted in

Roads to Geometry [13]. One of these, appropriately dubbed Euclid’s Fifth Postu-

late, seemed complex to geometers even into the 1800s:

Postulate 3.1.1 (Euclid’s Fifth). If a line segment intersects two straight lines form-

ing two interior angles on the same side that are less than two right angles, then the

two lines, if extended indefinitely, meet on that side on which the angles sum to less

than two right angles.

This wording, aside from being extremely long winded, is difficult to interpret. To

put it plainly, if we have a line intersect two other lines, and if the sum of the interior

angles is less than 180◦, then the two lines intersect. We can see a visualization of this
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ℓ

m

n

Figure 3.1.1: Euclid’s Fifth Postulate in action: line ℓ intersects lines m and n. The
marked interior angles have sum less than 180◦, meaning m and n will intersect.

in Figure 3.1.1. The two “horizontal” lines by Euclid’s Fifth Postulate should intersect

because together the two interior angles are less than 180◦. Despite the elusivity of a

concrete proof, mathematicians still operated under the assumption that there was a

sole interpretation of this, resulting in the titular Euclidean geometry.

Since his fifth postulate is his only postulate defining parallel lines – or, rather,

what makes lines not parallel – examining geometry without making commitments on

Euclid’s Fifth Postulate is called Neutral geometry. All of the following definitions

are all used within Neutral geometry, as they do not assume anything about parallel

lines.

Definition 3.1.2. Given a point O and a positive real number r, the circle with

center O and radius r is defined to be the set of all points P such that the distance

from O to P is r,

C(O, r) = {P | OP = r}.

Definition 3.1.3. A line ℓ is tangent to a circle if ℓ intersects the circle in exactly

one point. If P is said point, then ℓ is tangent to the circle at P .

In Figure 3.1.2 we see a circle O of radius r, tangent to line ℓ at point P . Addi-

tionally, we note that there are an infinite amount of tangent lines to a circle. Should

we take a finite amount of tangents, we encounter more shapes.
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ℓ

O

r

P

Figure 3.1.2: A circle, C(O, r) with center O and radius r. Line ℓ is tangent with the
circle at point P .

Definition 3.1.4. Suppose P1, P2, . . . , Pn are n distinct points such that no three of

the points are colinear. If any two of the segments P1P2, P2P3, . . . , PnP1 are either

disjoint or share an endpoint, the points P1, P2, . . . , Pn and those segments are a

polygon, denoted by P1P2 . . . Pn. The points P1, . . . , Pn are called the vertices of the

polygon and the segments are called the sides. A polygon with n sides is called an

n-sided polygon or an n-gon.

Definition 3.1.5. If all the segments in a polygon are congruent to each other and

all the angles are congruent to each other, then the shape is a regular polygon.

We can see two examples of polygons in Figure 3.1.3, the first of which is not

a regular 5-gon, which we call a pentagon. The second polygon is a regular 8-gon,

called an octagon.

Definition 3.1.6. A circle that contains all vertices of a polygon is said to circum-

scribe the polygon. The circle is called the circumcircle and its center is called the

circumcenter of the polygon. If the polygon has a circumcircle, we say that the it can

be circumscribed.

Definition 3.1.7. A circle that is drawn inside and is tangent to all the sides of a

polygon is called an incircle. The center of an incircle is called the incenter and

lies where the angle bisectors meet.
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P1

P2

P3

P4

P5

Figure 3.1.3: On the left is a 5-gon with vertices P1, P2, P3, P4, and P5. On the right
is a regular 8-gon.

Definition 3.1.8. A line that divides an angle into two equal angles is called the

angle bisector.

Definition 3.1.9. A line ℓ that intersects another line m at 90◦ is called a perpen-

dicular line. If ℓ divides m into two equal segments, ℓ is also called a perpendicular

bisector.

We can see an example of circumscribing and inscribing a circle or polygon in

Figure 3.1.4. Additionally, the red line in the figure is an angle bisector of one of the

triangle’s angle. Furthermore, the same line is a perpendicular of the opposite leg of

the triangle.

Figure 3.1.4: An inscribed circle (blue) and circumscribed triangle (green) with
a red angle bisector.
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3.2 Regarding Triangles

Many sangaku problems deal with triangles, so, to aid our understanding, we will first

mention notations and also address an important theorem for our solutions. When

referring to a triangle, such as the one in Figure 3.2.1, lower case letters will denote

one of the three sides. The angles that are opposite a side will share the same letter

but will be capitalized. For example, the angle opposite side a we will call angle A.

If more than one angle exists at a vertex, we will assume the standard three-letter

notation for an angle. The triangle itself will be named by the three vertices.

c a

b
A

B

C

Figure 3.2.1: Triangle △ABC has sides a, b, and c, with corresponding angles A, B,
and C.

If we find that the lengths of sides a and b are the same, then we have a special

case of triangle, an Isosceles triangle.

Theorem 3.2.1 (Isosceles Triangle Theorem). If two sides of an isosceles triangle

are equal then the angles opposite to the equal sides will also have the same measure.

Thus, for the case where a = b as mentioned, we would also say that A = B.

Another case for the Isosceles Triangle Theorem exists when all sides are equal to

each other. We find that all three angles A, B, and C are all the same.

3.3 Euclidean Geometry

The Euclidean geometric system is the geometry with which people are most familiar.

This is what is typically covered in high school geometry courses, and our basic
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understanding on triangles, squares, and other shapes are all based on the Euclidean

Parallel Postulate, a natural conclusion of the original interpretation of Euclid’s Fifth

Postulate.

Definition 3.3.1 (Euclidean Parallel Postulate). Through a point P , there can be

drawn at most one line m that is parallel to any line ℓ that does not contain P .

Because this is the geometric system with which most people are familiar, there

are many conclusions that we must note. Some of the more important Euclidean

results are:

1. There exists a triangle in which that sum of the measures of the interior angles

is 180◦.

2. Every triangle can be circumscribed, and the center of the circumscribing circle

is the concurrence point of the perpendicular bisectors of two of the sides of the

triangle.

3. The sum of the measures of the interior angles of a triangle is constant for all

triangles.

4. A rectangle exists.

See [13] for more information regarding Euclidean geometry, and the conclusions

made from the parallel postulate. Noting these five Euclidean results, there are

sangaku problems that we can quickly state or categorize as solely Euclidean.

3.4 Elliptic Parallel Postulate

Our investigation will not ultilize Elliptic geometry, but we include this for complete-

ness. The first of the non-Euclidean geometries we will cover is the Elliptic Parallel

Postulate. Developed by Bernhard Riemann in 1854, this system has the second of
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the three cases of parallel lines; in Elliptic Geometry, parallel lines do not exist. As

3.4.1 states:

Definition 3.4.1 (Elliptic Parallel Postulate). Through any point in the (Elliptic)

plane, there exist no lines parallel to a given line.

But what does this geometry look like? Explaining the differences between Elliptic

and Euclidean geometry is more difficult than simply showing different models. The

model of Elliptic geometry is a globe, as we see in Figure 3.4.1. When travelling

across continents, as an example, we see this in the Euclidean shortest path is not the

actual shortest path. This is why pilots fly close to the North Pole when flying from

the US to a different location in the Northern Hemisphere. Planes travel along a line,

defined as great circles, the largest possible circle one could draw on the sphere – the

same size as the Equator.

Figure 3.4.1: Elliptic geometric model with a triangle [8].

3.5 Hyperbolic Parallel Postulate

The Hyperbolic Parallel Postulate concludes our cases for parallel lines, which requires

that multiple parallel lines exist through one point, set up by the Hyperbolic Parallel

Postulate 3.5.1:
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Postulate 3.5.1 (Hyperbolic Parallel Postulate). The measure of the angle of paral-

lelism, the minimum angle for two lines to intersect, for a line ℓ and a point P that

is not on ℓ is less than 90◦.

This postulate gives us a theorem to easily analyze what occurs in this geometric

system:

Theorem 3.5.2. Given a line ℓ and a point P not on ℓ, there are at least two lines

through P that are parallel to ℓ.

Hyperbolic geometry came into existence in 1868 with Eugenio Beltrami’s paper

“Essay on the Interpretation of non-Euclidean Geometry,” which answered questions

proposed by János Bolyai and Nikolai Lobachevski in the 1830s, showing consistency

in hyperbolic geometry [13]. Similar to elliptic geometry, the existence of multiple

parallel lines gives us differing results from the Euclidean Geometric system, includ-

ing the invalidation of the existence of rectangles. Additional information regarding

models of Hyperbolic geometries can be found in [2].

Much like with Elliptic geometry, seeing a visualization of Hyperbolic geometry

makes understanding incredibly easier. Unlike Elliptic, however, models for this sys-

tem are not as simple as a sphere or a globe. Since this geometry is innately more

difficult to understand, mathematicians have struggled to create a perfect model.

Henri Poincaré gave us the “disk,” model, called the Poincaré Disk model, as shown

in Figure 3.5.1.

Similarly to the notion that Euclidean geometry only pertains to one case of

parallel lines, so does the angle sum in Euclidean geometry. Specifically for Hyperbolic

geometry,

Theorem 3.5.3 (Triangle Angle Sum Theorem: Hyperbolic). For any Hyperbolic

triangle △ABC, the angle sum of △ABC, denoted as ST , is strictly less than 180◦.

Notionally,
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ST = m∠A+m∠B +m∠C < 180◦.

Corollary 3.5.4 (Polygon Angle Sum: Hyperbolic). For a Hyperbolic polygon, the

angle sum for the polygon with n sides, denoted as SP is less than the number of sides

minus 2 times 180◦. Written out, this is seen as

SP < (n− 2) ∗ 180◦

Figure 3.5.1: Poincaré Disk model with lines and circles [6].

Figure 3.5.2 shows us visual comparisons between Elliptic, Euclidean, and Hyper-

bolic geometry, as well as providing an example of the plane.

Figure 3.5.2: Euclidean, Elliptic, and Hyperbolic geometries [12].
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c b

a

(a) A Euclidean right triangle. (b) A Hyperbolic right triangle.

Figure 3.6.1: Right triangles as seen in different geometries.

3.6 On the Pythagorean Theorem

As mentioned in Chapter 2, the majority of wasan had its roots in Chinese math-

ematics, among which books was the Zhou bi Suan Phan, where the Pythagorean

Theorem was the highlight. Because of this, many sangaku utilize the Pythagorean

Theorem. As we are taught in school, we know one form of this theorem, but we

also need different formulas for our different geometries. These formulas and more

information regarding the specifics of the geometries, can be found in [1].

Theorem 3.6.1 (Pythagorean Theorem: Euclidean). In a right triangle ∆ABC as

drawn in Figure 3.6.1a, the length of the hypotenuse squared is equal to the length of

the base squared plus the length of the height squared. That is,

a2 + b2 = c2. (3.6.1)

In essence, the Pythagorean Theorem states that there exists a relationship be-

tween the hypotenuse of a right triangle to the other two sides. We can translate

this into both Elliptic and Hyperbolic, though we exclude the Elliptic variant, as

our analysis will only pertain to Hyperbolic geometry. The Hyperbolic version of

the Pythagorean Theorem is stated in Theorem 3.6.2. Unlike the Elliptic counter-



3.7. Law of Cosines 22

part, where the value is simpler to interpret, ρ is more abstract and harder to define

succinctly, but it is a positive constant dependent upon the specific geometry one is

working with (see [1]). The value of ρ is associated with the curvature of a line in the

model, and in the Poincaré Disk, this value is equal to 1.

Theorem 3.6.2 (Pythagorean Theorem: Hyperbolic). In a triangle ∆ABC as seen

in Figure 3.6.1b, the hyperbolic cosine of the length of one side divided by rho, ρ, is

equal to the hyperbolic cosine of the length of another side divided by rho times the

hyperbolic cosine of the last side divided by rho. To put it more simply,

cosh

(
c

ρ

)
= cosh

(
a

ρ

)
cosh

(
b

ρ

)
. (3.6.2)

3.7 Law of Cosines

Another valuable asset for solving numerous sangaku – albeit from a modern setting –

is the Law of Cosines. This is especially valuable when trying to find lengths between

radii when a triangle is formed, as seen in one of the sangaku we analyze in Chapter

4. Each geometry has a unique formula for the Law of Cosines. For Hyperbolic

geometry, the Law of Cosines is the following:

Law 3.7.1 (Hyperbolic Law of Cosines). Any triangle within the Poincaré disk model,

where a, b, and c are the lengths of the triangle’s sides and A denotes m∠BAC.

satisfies

cosh(a) = cosh(b) cosh(c)− sinh(b) sinh(c) cos(A).

3.8 Law of Sines

Just as with the Law of Cosines, the Law of Sines is another very helpful tool for us

to utilize, as many sangaku deal with the relationship between angles of a triangle
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(a) SAS Congruence [9]. (b) SSS Congruence [14].

Figure 3.9.1: Two kinds of triangle congruence.

with the length of the corresponding side. Additionally, though each geometry has

a formula for this law, the formula differs slightly between the three types. Notably,

for Hyperbolic geometry, this relationship between angles and lengths is as follows:

Law 3.8.1 (Law of Sines: Hyperbolic). Any right triangle in the Poincaré Disk model

satisfies

sinA

sinh a
=

sinB

sinh b
=

sinC

sinh c
. (3.8.1)

3.9 Congruence

When we construct our proofs, we will be using many properties of triangles, so

establishing certain congruences is vital. All of the following triangle congruence

theorems are all valid within neutral geometry, allowing them for all geometries.

Theorem 3.9.1 (Side Angle Side (SAS) Triangle Congruence). If two triangles ex-

ist such that two neighboring sides and the angle between them in one triangle are

respectively congruent to neighboring sides and the angle between them in the other

triangle, then the two triangles are congruent.

We see an example of the Side Angle Side congruence in Figure 3.9.1a, where

DE ∼= AB, AC ∼= DF , and ∠A ∼= ∠D. We find that ∆ABC ∼= ∆DEF .
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Theorem 3.9.2 (Side Side Side (SSS) Triangle Congruence). If two triangles are

such that the sides of each triangle are respectively congruent with the sides of the

other triangle, then the triangles are congruent.

We see an example of the Side Side Side congruence in Figure 3.9.1b, where

AB ∼= PQ, BC ∼= QR, and AC ∼= RP . We find that ∆ABC ∼= ∆PQR.
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Chapter 4

Examining Sangaku Outside of

Euclid

Before examining the sangaku, certain disclaimers must be made. As mentioned in

Section 2.3, the perspective presented this chapter is not an example of how traditional

Japanese mathematicians would have solved the problems. We will not use bōshohō,

meaning all mathematical ideas will be from a 21st century American perspective.

Thus, to find a more accurate methodology, please refer to Hosking’s article “Solving

Sangaku” [7]. Additionally, the development of non-Euclidean geometry hadn’t been

developed until the mid 1800s in Europe, just before the end of the Edo era. Had

these geometric systems reached Japan during this time of closure, perhaps then some

sangaku might have been modeled in Hyperbolic or Elliptic geometries. Since time did

not work that way, however, this examination is purely hypothetical. Additionally,

the original sangaku did not have an official “name” given to them, but for simplicity’s

sake and to reduce the use of the word sangaku, we will be given the problems names,

based on either the original proposer or the problem itself.

Another important question to ask is what is our methodology? That is, how

are we going to approach each problem? Solving these we have two separate goals:
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first, to prove the problem can work in Neutral geometry and, second, to calculate

an answer. After the calculation, we reflect back on what is known, comparing the

Euclidean and Hyperbolic results. Thus, each of the problems we encounter will

have four sections, an introduction, the Euclidean result, a Neutral proof, and the

Hyperbolic calculation with a short comparison. However, before we start solving,

let us first see which problems cannot be done outside of Euclidean geometry, which

we do in 4.1.

Additionally, we add some conventions that we use throughout our analysis. First,

when showing or describing a circle, the center of the circle is how we derive both its

name and radius. For example, a circle with center called “r” will have a radius of

length r. Furthermore, not all of the original sangaku had centers in the circles, but

we add them to clarify radii and circles.

4.1 Sangaku only for Euclid

As mentioned in Section 3.3, there are many assumptions we make within Euclidean

geometry, including the existence of a rectangle. For that reason alone, we can clearly

see that any sangaku that contains a square is only valid within the Euclidean geom-

etry. Thus, a sangaku proposed by thirteen-year-old Satō Naosue in 1847 cannot be

done in a non-Euclidean setting. The problem is as follows:

R
t t

r

r

r

Figure 4.1.1: Sangaku proposed by
Satō Naosue.

Satō’s Sangaku Two circles of radius

r and two of radius t are inscribed in a

square, as shown in Figure 4.1.1. The

square itself is inscribed in a large right

triangle and, as illustrated, two circles of

radii R and r are inscribed in the small

right triangles outside the square. Show
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that R = 2t.

Our issue when trying to view this problem arises within the description, specif-

ically where it calls for a “square.” However, as mentioned in Section 3.3, squares

only exist within Euclidean geometry. Thus, we can simply say that Sato’s Sangaku

is unsolvable in non-Euclidean geometry.

Another claim resulting from the Euclidean Parallel Postulate is the all triangles

can be circumscribed by a circle. A further conclusion from this is that no shapes can

be circumscribed by a circle outside of Euclidean geometry, as we can divide the shape

into smaller triangles. One example of a sangaku that results from a circumscribed

shape is seen from none other than Yamaguchi Kanzan’s 1819 diary.

Twelve-Pointed Star Sangaku . We stick pins into the position of each vertex of

a regular dodecagon (twelve-sided shape), as shown in Figure 4.1.2a. Then we take

the string of length l = 150 cm and wrap it around the pins, as shown. This forms

a small regular dodecahedron in the center. Find the length of the side s of the small

dodecahedron.

(a) The Twelve-Pointed
Star Sangaku.

(b) Inscribed triangles in
the Twelve-Pointed Star
Sangaku.

Figure 4.1.2: Twelve-Pointed Star Sangaku and inscribed triangles in the star.

Although initially this construction does not seem to violate circumscribed trian-
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gles, we can quickly see this is not the case. We may create a circle through each of

the “pins” and quickly discover that the dodecagon is circumscribed. Since we can

create a regular dodecagon by constructing ten adjacent triangles, we find that this

triangle is circumscribed, and we cannot guarantee this exists within non-Euclidean

geometry. Figure 4.1.2b shows us these circumscribed triangles, colored in red, within

the circumscribed dodecagon.

Both of these sangaku deal with shapes that we deal with commonly in geometry,

such as circles, triangles, and squares. This is not the case for all problems, however.

Some sangaku, such as the next one, deal with shapes and items that were commonly

used in Edo Japan, such as a gunpai, a fan used for referees in sumo wrestling.

The Sugano Teizou Gunpai Sangaku . A chain of four circles of radii r1, r2, r3,

and r4 are touched on one side by the line l and on the other side by a circle arc of

radius r, which in sumo wrestling is called the “gunpai” (“umpire’s fan”). See Figure

4.1.3a. Find r4 in terms of r1, r2, and r3.

r1

r2

r3

r4

r1

r2

r3

r4

(a) Euclidean Gunpai. (b) Potential Gunpai in Hyperbolic
geometry.

Figure 4.1.3: Gunpai in Euclidean and Hyperbolic geometries.

This is not a shape we deal with normally outside of sumo, but we sadly find this

also only works within Euclidean geometry. Because we are not given lengths for the
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bordering lines, we cannot tell where to place the fan in the Poincaré Disk. As we

see in Figure 4.1.3b, we can place the gunpai in the center, but we find the blue and

red lines at the top and bottom of the drawing have different curvatures. Moving the

gunpai to a different location in the model would result in differently curved lines.

Thus, in order to utilize the Pythagorean Theorem properly and solve the problem

similarly to Fukagawa and Rothman [4], we need more information given in order

to help us fixate a location to place the fan, such as a given length of one of the

lines. When we are given distances, we find that sangaku are easier, if not explicitly

possible, to solve.

4.2 What Sangaku Work Then?

Now that we have seen a few examples of sangaku that can only be done within

Euclidean geometry, let us examine problems that are solvable outside of this standard

geometric system. We will specifically be looking at three sangaku problems, two of

which are found on the Katayama Hiko tablet from Figure 2.3.1a and one found on

another – the Kishi Mitsutomo Juku Sangaku.

4.2.1 Katayama Hiko Circle Sangaku

Our first example is from the Katayama Hiko shrine sangaku, which we can see in

Figure 2.3.1a in the bottom row second from the right, and this problem only contains

circles [4].

Katayama Hiko Circle (KHC) Sangaku . A circle of radius r inscribes three

circles of radius t, the centers of which form an equilateral triangle of side 2t as

shown in Figure 4.2.1. Find t in terms of r.
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t

t t

r

Figure 4.2.1: Katayama Hiko Circle Sangaku.

KHC Euclidean Solution. From the creator of the problem, we are given the

solution t =
r

.464
, which is a Euclidean result. Let us begin our investigation with

Neutral geometry to show that the given circular construction is allowable outside of

Euclidean postulates.

KHC Proposition. The Katayama Hiko Circle Sangaku satisfies the necessary re-

quirements of Neutral geometry.

Proof. Let △ABC be the equilateral triangle created from the given sangaku, where

A, B, and C are the centers of the smaller circles. Also, let r and t denote the radii

of the outer and inner circles, respectively. As defined by the problem, △ABC is an

equilateral triangle with sides of length 2t, so the measures of all three angles in this

triangle are the same. We connect vertices A, B, and C to the center of the largest

circle, meeting at the center R, creating three triangles, △ABR, △BCR, and△CAR,

as seen in Figure 4.2.2. As the radius of the large circle is distance r and the smaller

circles are radius t, AR ∼= BR ∼= CR = r − t. By the Side Side Side Congruence
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of Triangles given in Theorem 3.9.2, all three triangles △ABR ∼= △CBR ∼= △BAR.

Thus, we find the Katayama Hiko Circle problem satisfies Neutral geometry.

A

B C

R

Figure 4.2.2: Auxiliary lines drawn for the Katayama Hiko circle problem.

KHC Hyperbolic Calculation. We can find the lengths of r and t by using the

Hyperbolic Law of Cosines, Law 3.7.1. In order to use this, we must first consider the

angle measures and plug in values accordingly. Using the Poincaré model, Theorem

3.5.3 tells us that any Hyperbolic triangle must have less than 180◦. Thus, the measure

of the angles in △ABC are all less than 60◦ as all three angles in the triangle must

be equal. Since each of the smaller triangles are congruent isosceles triangles, we can

consider take △BCR without loss of generality. We then can easily find that the

m∠B < 30◦. Hence, using the Hyperbolic Law of Cosines 3.7.1, we have

cosh(r − t) < cosh(r − t) cosh(2t)− sinh(r − t) sinh(2t) cos(30◦).

Using basic hyperbolic identities, we have this is equivalent to

tanh(r − t) <
cosh(2t)− 1

sinh(2t) cos(30◦)
,
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and clever algebraic manipulation gives us

tanh(r − t) <
2
√
3

3
tanh(t). (4.2.1)

As the solution set to this equation is difficult to envision, we now consider the plot

of this inequality to better understand the relationship between r and t. This graph,

along with the graph of the Euclidean solution noted above are shown in Figure 4.2.3.

(a) Graph of Equation 4.2.1. (b) Graph of Euclidean result.

Figure 4.2.3: Graphs corresponding to the Katayama Hiko Circle problem, where t is
the vertical axis and r the horizontal

From these graphs, we note a few important facts. First, we note that the region

for the Hyperbolic region has a lower bound as r approaches infinity, to a value of

about t = 1.31696. We see that this value for t comes close to the limit even before r =

4. Another important conclusion comes from a comparison between the Hyperbolic

and Euclidean results. The result for the Euclidean variant of the Katayama Hiko

Circle is a valid solution for the Hyperbolic version, although the inverse is not true.

Equation 4.2.1 has a looser bound than its Euclidean counterpart does, which only

works for a linear relationship between r and t.
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R

R

R

R

R

r

Figure 4.2.4: Problem from the Kishi Mitsutomo school’s sangaku.

4.2.2 Kishi Mitsutomo School Sangaku

Next, let us investigate a sangaku problem from a juku, the Kishi Mitsutomo School.

Though the sangaku itself exists at the Kitano shrine in Fujioka city, pictures of the

tablet are elusive. The problem we choose reads as follows:

Kishi Mitsutomo School (KMS) Sangaku . As shown in Figure 4.2.4, a circle

of radius r is surrounded by a loop of five equal circles of radius R. Find r in terms

of R.

KMS Euclidean Result. The author gives us that, in Euclidean geometry, we are

given the answer of r =
7R

10
, so let us proceed and show the validity of the posed

question in Neutral geometry.

KMS Proposition. The Kishi Mitsutomo School Sangaku satisfies the necessary

requirements of Neutral geometry.

Proof. Let a circle with radius r and center F be surrounded by five circles of radius

R with centers A, B, C, D, and E, where each of these circles of radius R are tangent

to two outer circles as well as the inner circle. we know that r < R in order to
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A

E

D

B

C

F

Figure 4.2.5: Auxiliary lines drawn for the Kishi Mitsutomo problem.

satisfy this construction. Connect all centers of each circles to its neighboring circles,

creating lines through each tangent point of each circle. Call this polygon pentagon

ABCDE and note that F is connected to each vertex of the pentagon, as we seen

drawn in Figure 4.2.5. We note that the lengths of these red sides are all 2R and

the blue sides are all R + r. Thus, ABCDE is comprised of five triangles, △ABF ,

△BCF , △CDF , △DEF , and △EAF , with all equal sides. From the Side Side Side

Congruence Theorem 3.9.2, we see that △ABF ∼= △BCF . Using the same logic, we

find that △BCF ∼= △CDF . If we continue this, we find that, when we select two of

these triangles, the two chosen triangles are congruent to each other. Thus, ABCDE

is a regular pentagon, and we find that this sangaku construction is valid for neutral

geometry.

KMS Hyperbolic Calculation. In calculating the length within Hyperbolic ge-

ometry, we need to work with the angle sum of a polygon. From Corollary 3.5.4,

we see each angle in the pentagon, then, is less than 104◦. Therefore, we note that

the angle measurement of two matching angles in each isosceles triangle is less than

54◦, since the angles in pentagon ABCDE are being bisected by the sides of the
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triangles. The third angle in each triangle, the vertex angle, is strictly 72◦, as the

circle – which has 360◦ – is divided into fifths. Therefore, without loss of generality,

let us use △ABF to find a relationship between R and r. The length R + r, which

corresponds to the length of the legs of △ABF , can be found using the Hyperbolic

Law of Sines 3.8.1. As this side’s corresponding angle is less than 54◦, then we find

that

sin 54◦

sinh (r +R)
>

sin 72◦

sinh 2R

Algebraically manipulating this inequality, we can rewrite the equation to give us

a helpful model in showcasing the relationship between r and R. Specifically, this

equation can be written as

2 sin 54◦

sin 72◦
>

sinh r

sinhR
+

cosh r

coshR
. (4.2.2)

(a) Graph of the final equation for the
Kishi Mitsutomo problem.

(b) Euclidean result of Kishi Mitsutomo.

Figure 4.2.6: Graphs regarding the Kishi Mitsutomo Sangaku, where R is the vertical
axis and r the horizontal.

Let us consider the graph of this equation, just as we did in the last example.
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From Figure 4.2.6a, we see the relationship between r and R appears to be bounded

from below by a positive linear relationship after approximately r = 2. We note

that R > r at every possible solution point, which makes arithmetic and geometric

sense, as we expect the circles with radius R to be larger than the circle with radius

r even in Hyperbolic geometry. Comparing the Euclidean and Hyperbolic results in

Figure 4.2.6b, we notice that just like our previous sangaku, the Euclidean result is a

potential solution for the Hyperbolic result.

4.2.3 Katayama Hiko Triangle Sangaku

The previous two sangaku we have investigated in Hyperbolic geometry only contain

circles, so are there other constructions of problems that we can solve in this geometry?

The answer is yes. We investigate a sangaku containing a triangle in our next problem,

where we return to the same tablet as our first problem, the Katayama Hiko sangaku,

seen in Figure 2.3.1a, borrowed from Sacred Mathematics [4]:

Katayama Hiko Triangle (KHT) Sangaku . A circle of radius r is inscribed in

an isosceles triangle with sides a = 12 and b = 10 as shown in Figure 4.2.7. Find r.

a

b b

r

Figure 4.2.7: The Inscribed Circle sangaku from the Katayama Hiko tablet.

KHT Euclidean Solution. The tablet tells us that r = 3 when using Euclidean

geometry. Now let us show that we can find this length neutrally.
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A

B C
D

t
r

T

Figure 4.2.8: Auxiliary lines drawn on the Katayama Hiko Triangle problem.

KHT Proposition. The Katayama Hiko Triangle Sangaku satisfies the necessary

requirements of Neutral geometry.

Proof. Construct the triangle and circle as defined, with △ABC having three sides of

lengths 10, 12, and 10 for AB, BC, and AC respectively. Divide △ABC into two tri-

angles by drawing the angle bisector of A, which we call t. Denote the location where

the angle bisector intersects the base of the triangle as point D. By the definition of

an incircle, we see that the center of the circle lies on h. Using the Isosceles Triangle

Theorem (Theorem 3.2.1), we ∠ABD ∼= ∠ACD. As AB ∼= AC from the Isosceles

Triangle Theorem, both ∠BDA and ∠CDA are right angles. Similarly, AD acts as

the perpendicular bisector of BC, so BD = DC =
BC

2
. Because of Theorem 3.9.1,

the Side Angle Side Congruence, both △ABD and △ACD are congruent. Thus, we

find that the Katayama Hiko Triangle problem satisfies Neutral geometry.

KHT Hyperbolic calculation. Before we can calculate r, we must first actually

see the length r in the figure somewhere. We can draw the radius from the center of

the circle inside either of △ABD or △ACD, so without loss of generality, we choose

△ABD, and draw a radius of length r to the tangent point along AB, denoting this

length to A as T . Now, we have a right triangle with sides of length r, T and t− r,
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with t − r acting as the hypotenuse. Now, we may use the Hyperbolic Pythagorean

Theorem, Theorem 3.6.2, and find that:

cosh (t− r) = cosh r coshT.

Applying hyperbolic identities, we have this equivalent to

r = arctanh

(
cosh t− coshT

sinh t

)
(4.2.3)

and we conclude that the size of the radius depends upon the length of the angle

bisector. We see this through Figure 4.2.9, where we see two of many different sizes

for the circle.

(a) One possible construc-
tion of Katayama Hiko Tri-
angle.

(b) Another model for the
Katayama Hiko Triangle.

Figure 4.2.9: Two hyperbolic visualizations of Katayama Hiko Triangle sangaku.

Thus, in attempting to find values for which r is valid, we will fix T and plot r

vs t. Since T is a length along AB, we know that T < 10, as that is the length of

AB. We turn our attention to Figure 4.2.10, where three separate values for T are

explored: T = 2, T = 5, and T = 7, respectively. Notably, each graph shows us

that r is seemingly linear, with a minimum value of whatever T is. In comparison to

our Euclidean result, r = 3, we find that for our three T samples, when r = 3, t is

about 7.3 for T = 2, 10.3 when T = 5, and 12.3 at T = 7. Thus, in order to keep
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our Euclidean result valid in Hyperbolic geometry, we must change the triangle itself

to fully circumscribe the circle, a notable difference from our previous two sangaku.

Figure 4.2.9 shows us how changing the triangle changes the radius of the circle.

Another difference between this problem and the other two are that we have lines

instead of regions for the radius.

(a) Graph of Equation 4.2.3
for T = 2.

(b) Graph of Equation 4.2.3
for T = 5.

(c) Graph of Equation 4.2.3
for T = 7.

Figure 4.2.10: Graphs showing r (the horizontal axis) in terms of t for T = 2, 5, and
7, where t is the vertical axis.

4.3 Conclusion

When we examined sangaku outside of Euclidean geometry, we noticed two main

points. First, the Euclidean answers the original authors gave are also potential

solutions of our Hyperbolic inequalities or equations at the end of calculating. Second,

we saw that all the possible results allowed for more than than just the simple answer

given. We can use these findings to learn of what makes a culture interpret math

in a specific way. Additionally, we can look at different assumptions made. Should

we ever apply modern geometric findings to more sangaku, similar results would be

found. This usage of math problems as an offering gives us a new perspective into

the differences between how Europeans of the time and Japanese people of the time
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treated mathematics as a whole, even utilizing gender and age. As time progresses,

hopefully sangaku will be given more credit to the wonderful geometric findings we

can see throughout these tablets.
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