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Abstract

The Networked-Numbers Game—a mathematical “game” played on a sim-
ple graph—is incredibly accessible and yet surprisingly rich in content. The
Game is known to contain deep connections to the finite-dimensional sim-
ple Lie algebras over the complex numbers. On the other hand, Quantum
Dimension Polynomials (QDPs)—enumerative expressions traditionally un-
derstood through root systems-corresponding to the above Lie algebras are
complicated to derive and often inaccessible to undergraduates. In this the-
sis, the Networked-Numbers Game is defined and some known properties
are presented. Next, the significance of the QDPs as a method to count
combinatorially interesting structures is relayed. Ultimately, a novel closed-
form expression of the type D, QDPs and novel derivations of the QDPs
of types A,,, B,, C,, and D,, are provided using an inductive proof through
the Networked-Numbers Game. This provides a combinatorial avenue of

approach to a topic traditionally only attainable through Lie theory.
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Chapter 1

Introduction

The purpose of this text is twofold. First, it serves as an entry point into
the Networked-Numbers Game (NG) and some related mathematical ob-
jects in a way that is approachable by a typical undergraduate mathematics
student. Second, it develops in some detail some NG-related aspects of so-
called ‘Quantum Dimension Polynomials.” In particular, it offers closed-form
expressions for QDPs in types A,, B,, C,, and D,, and shows how these ex-
pressions can be obtained from NG play. It also provides a few applications
to an extension to the n-choose-k function and crystal graphs.

As introduced in Chapter 2, the NG is developed first naively and then
formally through an algebraic perspective. The chapter ends with an impor-
tant classification theorem relating the NG to finite-dimensional simple Lie
algebras. The NG provides a nice entry point into our combinatorial perspec-

tive of QDPs, with derivations/proofs of QDPs in types A, B,, C,, and D,



comprising most of the content of Chapter 3 and Appendix A. These proofs
consist mostly of sequences of NG states with generalized populations. Chap-
ter 4 briefly touches on two combinatorial applications of QDPs—an identity
relating the QDPs in type A, to ¢-binomial coefficients, and g-enumeration
of k-element subsets of an (n + 1)-element set, respectively.

Lastly, note that most of the enumerative and order-theoretic constructs

considered in this paper follow the conventions of [Stanl] and [Stan2].



Chapter 2

The Networked-Numbers Game

Before we start discussing Quantum Dimension Polynomials and their uses,
it is important to understand what the Networked-Numbers Game (NG) is.
The NG is a “game” played on a finite simple graph whose edges are labeled
by values from an associated matrix. The game itself is often attributed
to Mozes [Moz|, who was inspired by a Math Olympiad problem. FErikson
[Erik1], [Erik2], and [Erik3] seems to have conceived of the game in the level
of generality we consider here. However, our setup will more closely follow
the more recent work [Donl].

In the following, we first present an “informal introduction,” then a pre-

cise definition of the NG, and lastly an important classification theorem.



2.1 An informal introduction to the Networked-
Numbers Game

To set up the NG, first choose a finite simple graph I" with n nodes (the
nomenclature of ‘nodes’ is more common than ‘vertices’ in references that
consider the NG). To each node ; € V(I") assign a population—a nonnegative
real number \;—at least one of which is nonzero. Additionally, to each edge
in I' between nodes 7; and «; assign two negative integers a,;; and a;;. Their
absolute values, seen shortly in an example, will act as amplifiers, and a value
of |a;;| > 11is often denoted on I" by drawing |a;;| arrows on the edge between
7; and 7; (this can be seen in Example 2.1.1).

The goal of the game is to successively “fire” nodes with positive popu-
lations in such a way that eventually each population is nonpositive; that is,
for each i such that 1 < i < |[V(I')|, \; < 0. Examples of such setups are
given in Examples 2.1.1 and 2.1.2.

To fire a given node v; with a positive population \; in a given state,
simply update each population \; at node ;, 1 < j < nand j # 1, as follows:
if v; is not adjacent to -, keep A; constant; otherwise, A; — A;+|a;;|A\;. This
can be understood as taking \;, ‘amplifying’ it by |a;;|, and adding it to ;.
Note that the quantity A; + |a;;|A; is the same as \; — a;;A; since we have the
convention that a;; < 0. From here on, we’ll use the latter expression, which
is more common in the literature. NG play stipulates that a firing move is

only ‘legal” when the population at the to-be-fired node is positive. Lastly,



update \; by changing its sign. We repeat this legal node-firing process

iteratively, producing a (possibly infinite) sequence of NG states.

Example 2.1.1. Consider the graph denoted by I' = Cj5 (for reasons ex-

plained later):

| EEE—— s e L

! 72 Y3

Note that in this case, the arrows on the edge between v, and 3 represent
ass = —1 and aze = —2. Let us assign initial population (2,0,4) to (71,72, 73)
and play the NG as follows. To keep things consistent, whenever we are faced
with multiple firing choices, we will choose the leftmost node to fire. This

choice produces the following state sequence:

2 0 4 -2 2 4 0 —2 6

71 V2 73 71 V2 73 71 V2 V3
0 10 —6 10 —-10 4 —10 O 4

Y1 V2 73 71 V2 73 71 V2 73
-1 —4 —2 — 4 —2 —4

Y1 Y2 Y3 Y1 Y2 Y3 Y1 Y2 Y3

Note that the game does indeed terminate with this choice of I' = C5 and
initial population (A1, Ao, A3) = (2,0,4). The next example will show a game

that does not terminate.

Example 2.1.2. Now let our graph I' be the standard 3-cycle with all am-

plitudes a;; = —1 as follows:



4 Y2

V3

Similarly as above, let us assign initial population (Ay, Ay, A3) = (1,2, 3).
We will choose firing sequence (71, v2, ¥3, V1, V2, V3, V1, V2, - - - ) to produce the

following state sequence:
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-7 2 15
19 2 —19 21
B WA WA
—15 4

This game appears to never terminate. This can be seen by considering
the sum of populations throughout the state sequence. Upon firing node
i, note that we subtract \; twice from the sum (at node ~;) but also add

A; twice to the sum, once at each of the other nodes. Thus, the sum stays



constant no matter which node is fired; but, in order to reach a terminal
state, the sum would need to eventually be negative.

This indeed shows that the NG played on this 3-cycle never terminates,
no matter the starting population or firing sequence. In fact, “most” graphs
have no terminal games, as demonstrated in a special classification theorem
in Section 2.3. But, before we can state this classification, we must more

formally define the Networked-Numbers Game.

2.2 The formal Networked-Numbers Game

To this end, let I be a finite set, whose elements can be thought of as indices
or colors (i.e., I is a coloring set). Next, let I' be a simple graph—i.e., I has
no loops or multiple edges—whose vertices or nodes are V(I') = {v; }ie; and
whose edges are F(I"), which consists of two-element subsets of V(I"), each
corresponding to an edge and its unique endpoints. Lastly, let A = (a;;); jer

be an I x I integer matrix satisfying

(

=2, ifi = j
@5\ =0, if {i,j} ¢ E(I)

<0, if {i,j} € E(T).

This matrix is used to label the edges of I', as in section 2.1.

We call 4 = (I', A) a game graph or NG graph. We also call I' = I'(¥)



its playground graph and A = A(¥Y) its amplitude matriz. To emphasize the
role of I, we sometimes write I'; or Ajy;.

A playthrough of the NG consists of a sequence of states and node firings;
the node firings are used to determine the successor of a given state.

To play the NG, the player chooses a game graph & = (I';, A;«;) and an
initial state, an I-tuple of nonnegative integers A := {\;};cr, at least one of
which is nonzero. From this point on, we denote by state any integer I-tuple
i = (pi)ier- Each p; located at position i is called the population at node
v;. Given a state u, the only move a player can make is to choose a node ~;
whose population p; is positive and fire it. This firing transforms the current

state p into a new state v according to the rule
Vi = Hj — Qijlhis

for all j € I, where a;; € A. Note that this is the same process as in Section
2.1, since a;; = 2 for all ¢ € I (equivalent to saying v; = —p;) and a;; = 0 if 7,
is not adjacent to «;. Additionally, the value a;; from the amplitude matrix
A does indeed, in a sense, ‘amplify’ j; before we subtract it from p;.

Thus, gameplay begins by starting with an initial state A and applying
legal node-firings to resulting states. Gameplay ends when the player obtains
a terminal state, in which all populations are nonpositive.

Algebraically, a state A can be viewed as a vector Z A;w; in the Z-module

il
A freely generated by the set 2 = {w;}ic;. Elements of Q are fundamental



weights (or fundamental positions), and elements of A are weights or game

positions. A weight or position A = Y. N\w; is dominant (strongly domi-

i€l
nant) if A\; >0 (X\; > 0) for all ¢ € 1.
Let S; : A — A be the Z-linear transformation given by the i-th NG firing

move (but without regard to legality):

=Y (N = Aiag)w;,
jel
where «; is the i-th row vector of A, so a; = 3, a;w;. Since S? = ¢ (the
identity Z-linear transformation A — A) in the group Aut(A) of invertible
Z-linear transformations on A, we can consider the Weyl group W < Aut(A)

generated by the S;’s. Now, it is known that W = (s;|(s;s;)™% = ¢€), where

m;; is the unique positive integer for which a;;a; = 4(:082(7;_). Also, the
ij

‘parity’ function sgn : W — {41} given by sgn(s; ---s;,) = (=1)F is a

well-defined group homomorphism [Hum].

Example 2.2.1. Consider W for I' = (5 as follows,

! 72 V3’

where we have that



In this case, calculating the m;;’s gives that

ayzag; = (—1)(=1) = 1 = 4 cos? (i) — My = 3,
mi2

ayzaz; = (0)(0) = 0 = 4 cos® <i) = my3 = 2, and
mi3

agzazes = (—1)(—2) =2 = 4 cos? (mi) = Moy = 4.
23

Therefore,

W = (54(si55)™7 =€)
= (51,89, 83]51 = 55 = 53 = (s152)° = (s183)° = (s233)" =€),

a group that is known to have order 48.

Now that we have defined the NG, the natural question to ask at this
point is what choices of NG graphs ¢ = (I', A) and initial states eventually

produce terminal states; i.e., finite gameplay?

2.3 The La Florado Klasado classification

In order to answer this finiteness question, let us provide a few definitions.
First, a NG state g on graph & = (I'y, Aj«;) is nonzero if there exists

1 € I such that p; # 0. Next, a state is dominant if u; > 0 for all ¢ € [I.

The graphs that concern us presently are called integer game graphs (ING

graphs), in which each amplitude a;; € A is an integer.

10



Definition. A game-gratifying graph is a connected ING graph ¢ = (', A)
that has a nonzero dominant initial state from which a terminal state can be

reached.

We are now ready to state a classification of game-gratifying graphs. This
classification forms one part of a multifaceted theorem sometimes referred to
as La Florado Klasado (often denoted LFK), as in section 9 of [Donl]. This
theorem refers to Figure 2.1 on the next page. The most famous instance of
an LFK equivalence is the classification of the finite-dimensional simple Lie
algebras over C accomplished by W. Killing and E. Cartan in the late 1800s;

see [Col] for a compelling account of the discovery of the latter classification.

Theorem 1 (La Florado Klasado). Suppose ¢ is a connected integral NG
graph. Then 9 is game-gratifying if and only if 4 is a Cozeter-Dynkin flower;
i.e., one of the NG graphs of Figure 2.1.

11



Figure 2.1: The Coxeter-Dynkin flowers of LFK

o ¢ — — — — e e o
— ¢ e — — — — e r———<«o
— ¢ & — — — — e ——<«+o
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Chapter 3

The Quantum Dimension

Polynomial Identity

3.1 A brief introduction to QDPs through
Weyl symmetric function theory

Now that we have defined the Networked-Numbers Game on an integral NG
graph, it is time to present the main result of this work: a description of
Quantum Dimension Polynomials (QDPs). This Section 3.1 lays out many
definitions based on terminology introduced in Section 2.2 and is not neces-
sary for an initial understanding of QDPs, but it serves as a brief reference
for the context of QDPs in Weyl symmetric function theory. Throughout
this section, assume ¢ is a Coxeter-Dynkin flower.

Let {zi}icr be a set of indeterminates. For any pu= )., piw; , let 2 be

13



the Laurent monomial [[,.; 2. Note that state vectors are integer /-tuples,
so the monomial exponents here are integers. Let £ (%) be the Z-algebra of
Laurent polynomials in the variables {z;}ie; with coefficients from Z. The
Weyl group W acts on Z(¥) by the rule s; - 2 := 2% extending Z-linearly
to all of W in the obvious way.

Say x € Z(¥) is W-invariant, or a Weyl-symmetric function, if o -y = x
for all o € W. Let Z(4)" be the Z-subalgebra of Weyl symmetric functions.

For each strongly dominant p € A, define an ‘alternant’ A, by

A, = Z sgn(o)z7H.

ceEW

Let 0 := > w; be the ‘smallest’ strongly dominant weight. A fundamental
theorem in the theory of Weyl symmetric functions is that, for each dominant

)\, there is a unique solution y € .Z(%)" such that
Ag ‘ X = A)\J’_g.

This unique Weyl symmetric function is denoted x, and called a Weyl bial-
ternant. By specializing each z; at a certain power of ¢, we get a g-polynomial
called the quantum dimension polynomial, denoted qdz’mf.

A quotient-of-products expression for gdim§ seems first to have been
given in [Jac] where the product is taken over the so-called ‘positive roots’ of

the ‘root system’ associated with ¢. In [Don2|, a connection is made between

14



positive roots and states of NG play from a generic strongly dominant weight.
This connection is the basis for the following result, presented as Theorem

10.6.2 in [Donl]:

Theorem 2 (Theorem NG). Given a dominant weight \, NG play from
initial position X\ + o must terminate on our given Coxeter-Dynkin flower ¢ .
Let (7iy, - .- 74,) be such a terminating game, and let cx(A+ o) be the positive
number at node vy;, just before this node is fired in our given game sequence.
Then the multiset of numbers {cx(\ + 0)}._, does not depend on the choice

of game sequence, and

L g Ote)

. g o
qdimy = ’H T

We will employ Theorem NG in the next section in our derivation of cer-
tain quotient-of-product expressions for gdim{ when ¢ € {A,,, B,,,Cn, D,,}.

Given any polynomial in ¢ with positive integer coefficients, it is reason-
able to ask what the polynomial might enumerate at ¢ = 1, especially if the
polynomial has a nice product expression. One might further ask what the
positive integer coefficients enumerate.

For quantum dimension polynomials, there is a nice combinatorial answer
to these questions: gdimy is the rank-generating function for an edge-colored
and ranked poset called a ‘crystal graph’ which we denote here by R(A). A
distinguishing feature of crystal graphs is that they are ‘fibrous’ in that all

single-color components of any R(\) are chains. The notion of a crystal

15



graph was developed by Kashiwara in [Kashl] and [Kash2| as a distilling
of information about so-called crystal bases for representations of quantum
groups. The precise definition of a crystal graph is beyond the scope of this
thesis, but we can describe how one can, in practice, construct them.

To begin, one constructs a ‘seed graph’ from NG play, and then one grows
all other crystal graphs from this seed. By playing the Numbers Game with
the rows «; of A as initial positions, we can construct a certain ¢-structured
fibrous poset A(¥) called the adjoint crystal graph. This graph is special in
that, for any dominant weight A, there is a ‘crystal power’ A(¥)®™ of A(¥Y)
(of Section 5 of [Don3]) which has a (¢-structured and fibrous) connected

component R(A) whose unique maximal element has weight A and

WGEF(R(\); 2) = x5, and

RGF(R(\);q) = qdim?.

It is in this sense that Quantum Dimension Polynomials can be seen as

rank-generating functions.
3.2 Our QDP Theorem, and proofs for types
A, and D,

For a given integral NG graph ¢ and weight )\, the corresponding QDP is
represented by qdimy. These enumerative expressions are already defined

in the literature, but in the proof of Theorem 3 we provide an NG-based

16



approach for deriving these polynomials. For the sake of brevity, we only
include proofs of the A,, and D,, cases here, while the B,, and C,, arguments
can be found in Appendix A.

Two quick notes about notation: for ¢,j € Z*, ¢ < 7, let

J
M=) A =X+ A+ A

For i > j, let )\{ := 0. Additionally, for & € Z*, define the g-integer to be

1—qk

kl, =1 A )
[kl +tq+-+q 1—¢

We use the rational function form as a simplification of the polynomial and

regard the discontinuity at ¢ = 1 as removable.

Theorem 3 (The Quantum Dimension Polynomial Identity). Consider the
integral NG graphs of type A,, B,, C,, and D, named in Theorem 1. Let

A= (M), be a nonnegative weight. Then

a4 N+,
qdimy™ = : : ’
A 11131_[1 7+1—1,
n—1n—1 i . . n n n n—1 . .
: X 4+7+1—14, AP+ AT 42+ 1 —i— ],
dimy" = ! :
R lljl;[ J+1—1, gjl:[ 2n+1—1i—j],
n—1n—1 1 . . n n+l n n . .
qdz'an_HH[AgﬂH—z]qH NN 20+ 20— g, nd
T - . — )
e Vo Sl R e 2n+2—1i—j],
Jdim n:ﬁ’ﬁ[A{Jerrl—i]q”‘l ﬁ P72 4 X2+ 20 — i — g,
’ =1 j=1 []+1_Z] i=1 j=i+1 [QH—Z—]]q



Furthermore, the above polynomials can be obtained by playing through

the corresponding NG graph with initial weight (\; + 1), recording each
fired population p; as 14, and multiplying each g-integer together.
Proof. (Case A,):

We will use induction to establish the following three claims for any n €
AR

Using firing sequence (713 Y2, Y1573, Y25 V15 - -+ 3 Yoy, Y1, - - - s Y1) O Ay, start-
ing with initial weight A = (A +1,..., A, + 1) =>7 (A + 1)w;, we get

1. The above gdimi" g¢-polynomial equality holds by taking the fired
A

weights,

2. The sequence of NG states ends with terminal state

N N
N 7 4 N N
7 A /’D 7 7
& O o v ~>
/\P 7 7 7 7
7 72 73 Tn—1 Tn ) and

3. At an attached “ghost node” ~,.1 with initial weight A, .1 + 1 to node

Yn, the terminal weight of 7,1 is
n+1
AP+ =M+ 4 A+ (n+1) =D (A +1).
i=1

This claim is essential to the induction step of the proof.

18



(Case n=1):

Playing the NG on A; using firing sequence (7;)-keeping in mind the
“ohost node” ~,, we get

Y
N N /> v
X X \P\/ X
w/ 3 / ™~
N>

At "2 st 72
Thus,
T P Y S S :ﬁﬁ[AHjJrl—i]q

mq [1 +1 - 1](1 i=1 j=i [J +1- i]q ’

2. The terminal state is the same as we desire, and

3. The terminal weight of the “ghost node” 5 is A{+ Ay +2 = Z?:1(/\i+1)-

Therefore, our proposition holds for n = 1.

(Case n=n+1):

Now, suppose that our three hypotheses hold for some n € Z*. That is,

the result for our gameplay so far on A, is the following picture:

N
X
N N
N 7 7 N N N\
% o~ P2 % s > X
< N N & >
/j\ /j\ /j\ /j\ /j\ }0\
71 Y2 Y3 a Yn—1 Tn Yn+1

19



We also get that

N 441 -1,
dimin = .
T H Jl_[l J+1—1,
Now continue gameplay on A, by adding on a new “ghost node” v, +1)+1

= Y10 With population A, 241 and appending to the current game the firing

sequence (Yni1,Yn,---,71). We get the following game sequence:

Y1 Y2 3 o Yn—1 Tn Yn+1 ’?n+2
\)
A
Y Y
N % % N NN /\ Ny
% N v % N X X o X
pEE S S S A A
s s s s j&» -~
/\/> P o s e rs o}
71 Y2 Y3 Yn—1 'Yn '7n+1 Yn+2
q)\
X
'\
N Ny
/ aN X
» &
s ~
. o
Yn+1 Yn+2
M
q)
X
N
N % LN N N N
% o~ xx\X % % / N X
N By B ¥ S
/\[\ /\[\ ‘[\04"/ /\[\ /\[\ /\[\ ‘[\0\/
71 Y2 Y3 Yn—1 Tn Yn4+1 Yn42



X
N N
/ N / N N N N
N s ~ %/ %/ x/ o
«v < «v
ST 2 2 2 T T ~
N . . . - .
71 Y2 Y3 TYn—1 Tn Yn+1 Yn+2

V= gdim ﬁxm (nt1)+1- K
A A

adim [(n+1)+1—-k],
—ﬁﬁW+J'+1—i]qﬁ[AZ“+(n+1)+1—k}q
i=1 j=1 +1-=i, 1 [(n+1)+1—-k],
n+ln 1[)\5+j+1—1]q

2. Terminal state

21



4 N 4 N N N
N / /\/ / / /
o\ o\ o\ Qo) QN N
/\P /\P /\P /\P /\P /\P
Y1 Y2 Y3 " Yn—1 Tn Yn41

3. The weight of the new “ghost node” v, 41)+1 is

M+ +2) =M+ + At + Ay + (0 +1) + 1)

(n+1)+1

= Z (A +1).

i=1

Therefore, the proposition holds for all n € Z*.
(Case B,): See Appendix A.
(Case C,): See Appendix A.

(Case D,,):
n—1n—1
/\] 1—
Note that H H s o _ qdimf”’l. This falls in line with the
=1 j=t j +1- Z

fact that when viewing D,, as follows,

X\,
N x\’ N
N N X &
X X > YT
ﬁ*\ jﬂ» ~ o~ Tn—1
N
a1 Y2 Yn—3 Yn-2 X
\ﬁ@
Tn

removing 7, leaves a copy of A, ;. In fact, starting with firing sequence

(Y1592 Y15+ -5 Va2 Yne3s - - - » V2, V13 Y15 V-2, Yn—3, - - - » V2, 71) Produces

22



since the only two times 7, _, is fired it first has population \}~2 + (n — 2)
and then \"~' + (n — 1), which are each added to (A, + 1) at 7, to give
population A7 + A% + (2n — 3).

All that is left at this point is the second double product of the pro-
posed qdz’mf ". The firing sequence we choose will depend on whether n
is even or odd. For even n, continuing gameplay using firing sequence

(/Yna Yn—25Yn—=3y 72, V15 Yn—1, Vn—2 Yn—=3>- - - » V25 - - 3 Vnr Yn—2, Vn—3; Vn—1,

Yn—2;7n) gives us the following:

23
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The underlined values in the above sequence do indeed match those in the
second double product of the proposed qdz’m/\D ", and so the Quantum Dimen-
sion Polynomial Identity holds for type D,,, where n is even.

For odd n, continuing gameplay using firing sequence (Y, Yn—2, Yn—3, - - - »

Y2, V15 Yn—1 Vn—2s Yn—=3s - - -5 V25 - - - s Vn—15 Yn—25 Yn—35 Vns Yn—2; ’)/n—l) giVeS us the

following;:
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Y /
Y Y <
v s 2 \[&/“’ P
N Q2 0\
/\P /\P /\P 4 Yn—1 /l\'
> /'\/
7 2 Tn—3 Tn—2 \[\@
/
Tn

Again, the underlined values in the above sequence do indeed match those
in the second double product of the proposed qdz’m/\D », and so the Quantum

Dimension Polynomial Identity holds for type D,,, where n is odd. O]

3.3 Examples

To demonstrate what Quantum Dimension Polynomials tend to look like, we

present the following examples of types A,, and D,,, respectively.

Example 3.3.1. Let 4 = A3 and let A = (2,1,0). Then

gimAs — Pt g A A A 420 [+ Ao+ Ag + 3] [Ae + Ly Ao+ As + 2] [As + 1]
RN T 2], 3], 1, 2, 1,
(3, 151, 6], [21, (34 (1,

_ (1= -¢)1-¢" )1 -1 —¢*)(1—q)
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=149+ +q++¢+¢ )1+ +4q")

=142 +4¢* +5¢° +7¢* + 7¢° + 7¢° + 5¢" + 4¢® + 2¢° + ¢*°.

Example 3.3.2. Let 4 = D, and let A = (2,1,0,1). Note that from Exam-

ple 3.3.1,

3 P .
P‘Z“‘J‘i‘l_l]q_ A

Thus,

gdimP* = qdim® AT+ A3+ 5], M+ +4], A+ M+ 3,

210) [5]q [4]4 [3]q
et A3l e+ A+ 2 A+ 1,
314 2], [

. A
= qdzm(;m) “TTe1 T41 o1 ol Tol 11

= gdims, L= = ) - )1 - ¢)(A —¢)(1 — ¢*)
L0 (1= ¢®)(1—¢)(1 = ) (1 = ¢*)(1 - ¢*)(1 —q)
_ gdim (1-¢")(1-¢*(1—q")
L0 (1= ¢)(1 - ¢®)(1 —q)
1-¢)1-¢")(1-¢) 1-¢)1-¢")(1-q)

1-91-9(1-¢) (1-¢)1-¢)1-q)
_(1-¢) (1-¢°) (1-4¢") (1-¢° (1-4q)

T (l-q (O-¢) (1-¢ (-9 @1-9

=(1+q+ P+ +N1+ )1+ + ¢+ + ¢°)

A+ g+ + P+ + P+ + A+ g+ + P+ + ¢+ ).

(Note that this is a polynomial of degree 28.)
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Chapter 4

Applications

Now that we have stated and proved the Quantum Dimension Polynomial
Identity and examined a few examples, we now provide a few applications.
First, in Section 4.1 we provide an identity for qdz’mf}?. Second, in Section
4.2 we use QDPs to answer a combinatorial problem involving the number

of possible subsets of a given set that satisfy a certain property.

4.1 A special identity for qdimf}:

Recall that for a positive integer k& < n, the n-tuple wy, is the k-th fundamental
weight with the value 1 in the k-th position and the value O elsewhere. For
example, for n =6, wy = (0,0,0,1,0,0).

What happens if we examine qdimﬁ;? It turns out that this QDP can be

expressed in a very nice way. But first, let us declare some notation.
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Definition. For an integer n > 1, we extend the factorial operator ! to

g-integers by defining

Additionally, for an integer k£ such that 1 < k < n, we extend the typical
falling factorial notation, which takes the first k factors in the factorial as
follows:

()i = [nlgln — g -~ [(n — k) + 1], = %

Lastly, when 0 < k£ < n we extend the ‘n choose £’ operator to g-integers by

defining

Example 4.1.1.

(1= =g (1 -¢°)

(1= -¢)(1—q)
:1_q5 1— 4

) 4q
l—q 1—4¢?

=(1+q+@P+E+¢")A+ )

:1+q+2q2+2q3+2q4+q5+q6.
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Note that when evaluated at ¢ =1,

0.0

q=1
We are now ready to state the following proposition:

Proposition 4.1.1. For positive integers k and n with k < n,

1
gdim® = (" T7)
k k .

a degree k(n + 1 — k) polynomial.

Proof. Let k and n be positive integers with £ < n. From Theorem 3,

Note that ) = 1if i < k < j and A = 0 otherwise. Thus, we get the
following series of equalities involving a long double product of g-integer

fractions that each telescope:

35



n n

j L1
qdimﬁlj = HH & —.i_j i , iy
J+1—i,

i=1 j=i

Sl 2,
HH[]+1—2]

N

B [k:+2—1]q k+3-1], [k+4-1], n+2-—1],
T \[k+1-1], [k+2-1], [F+3-1], ”"m+1—1h)
'([k+2—2]q.[k+3—2]q_[k+4—2]q. .[n+2—2]q)
k+1-2], [k+2-2], [k+3-2], n+1-2],

(%)
_([k+2—k;]q_[k+3—k]q.[k+4—k:]q. .[n+2—k]q)
k+1—-k, [k+2—k], [k+3—K] n+1—kl,

n+2-—1], [n+2-2], [n+2—k,
a ([k+1_1]q) . ([k+1_2]q)‘ .<[k+1_k]q)
It Uyl [0 1) + 1 R,
[k]q[k_ 1]q"'[1]q
([n + 1ok
(14!

("),

Interestingly, note that in the telescoping double product at (x) there are

k(n + 1 — k) total fractions. Moreover, the degree of the resulting polynomial
is k(n+1—k), as there are, after cancellation, k fractions multiplied together,

each contributing a degree n + 1 — k polynomial. O]

Looking back at Example 4.1.1, note that the degree of (g)q is6=3(4+
1-3)=k(n+1-k).
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Example 4.1.2. To see the telescoping products in action, we will examine
qd@'mﬁ: for all k. We break up each single product by parentheses, noting
that in each block every g-integer cancels out except for the last numerator

and the first denominator.

gimds — P e P+ M A3)y +4]y A5
e =, 2 B, M, B

M+2, M+3, N +4], (M43,

m%ﬁﬂ]&%m[ﬁ%]pmq%
(e M2, Pa+3le M +4

[ 2l Blq (4]
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A+ 5

M4

A? + 3,

o
— o
+ =
[T
=<
~__
VR
=2
™ o
=
\I/\q.} o<
> =~ =
< o = N
o
ap| = K =
=<, o Q=
. - N
A = =
7 N N ‘o — . 53B)
AR + = = = ~ ==
o O N S > _ ax
+ s =< s ~———
~ O M N—— o> o o
= N : R g S s~
: ))BM[[ < = o =
S I - = . o= + ST v
432\q > = > qma +HSSBMB((\ = :
=<| ©olm = e =T s T X — l ~— 7T
= elm s S N T e
- . - ol o Il . - e o= )[[@
.|q_,|0“.|_.|_.|_.|, = > — JEESM EEES vl e o> o> o N——
el A < | L |0, | N .
: SIS o = IT_M_ITB S == IT.M_\I/ ¥e)
]q]q]fmﬂfﬂbp s 3 ]q]qafﬂbB o] R~ L=
A FOL Nt T S~ M =< - 0| = = = L |0, e
— " — Y= — — - — 2= NN
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4.2 The lattice of k-element subsets of an (n + 1)-
element set

Consider the following combinatorial problem: given the set A = {1,2,...,n+
1}, how many k-element subsets of A are there whose elements sum to a fixed
number s? A version of this problem was posed in [Procl] and addressed us-
ing ideas similar to what we present next. In the following, we largely assume
knowledge of distributive lattices.

To approach this problem using QDPs, we will construct a lattice of
k-element subsets of A. To this end, consider a k-element subset S C A
as a strictly increasing k-tuple {si,ss,...,sx}. Given another such subset
T ={ti,to,....tx},say S <T <= s; <t; for each i. Let L,(k) be the set
of all k-element subsets with respect to this partial order.

Note that for any S,T" € L, (k), there is a least upper bound SV T =
{max(s1,t1),...,max(sy, ty)} and a greatest lower bound
SAT = {min(s1,t1),...,min(sg,tx)}. Additionally, ‘v’ distributes over ‘A’
and vice-versa:

RV (SAT)=(RVS)AN(RVT)

and

RASVT)=(RAS)V(RAT).

That is, L, (k) is a distributive lattice.

With respect to this lattice ordering, the minimal element (with rank
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0) is {1,...,k} and the maximal element (with rank k- (n 4+ 1 — k)) is
{n+2—Fk,...,n,n+1}. Also, the rank of any S € L, (k) is

k(k+1)

pS)=si4 - ds— (I Hh)=si4 - +o———

Now, for T € L, (k), T covers S, written S — T, if and only if there is
some j € {1,...,k} such that s; + 1 = ¢;, while s; = ¢; whenever i # j. In
this case, let ¢ := s; (‘¢ is for color) and write S — T.

It is a well-known fact from the theory of crystal graphs that L, (k) is the
crystal graph associated with the dominant weight wy, for the Coxeter-Dynkin
flower A,,. Within this crystalline context, L, (k) is known as a ‘miniscule

lattice.” By the Quantum Dimension Polynomial Identity and Proposition

4.1.1,

(n Z 1>q _ ([”]q)k _ qdimﬁ,:' = RGF(L,(k),q).

Example 4.2.1. Consider the lattice L5(3), constructed as described above.

This lattice can be described using As with initial weight ws = (0,0, 1,0, 0):

The lattice Ls(3) is shown below:
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0{4,5,6} q°

{3,5,6} ¢

{3,4,6} 247

2,4,6}

1,4,6} ¢{2,3,6 {2, 4,5} 3¢5
/ +

1,3,60g{1,4,50a{2,3,5} 3q*

{3,4,5} 3¢°

1,2,6}

{2,3,4} 3¢

1,2,4} q
e{1,2,3} 1

Indeed, the Rank Generating Function shown on the right of L5(3) matches

qdz’mf{f from Example 4.1.2 when multiplied out.

Interestingly, there is no known product formula for the number of k-

element subsets of {1,2,...,n + 1} whose sum is a fixed number s. This

k(k+1)

number can be discerned as the coefficient for ¢" = ¢°~~ 2 in the ¢g-binomial

coefficient (”Zl)q [Procl].

For example, in the above lattice, the 3-element subsets of {1,2,3,4,5,6}
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that sum to s = 11 are {1,4,6}, {2,3,6}, and {2,4,5}, which can be found

k(k+1) 3(4)
MEED — 1 - 38 — 5,

in the row with rank s — 5
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Chapter 5

Concluding remarks

We were able to introduce the Networked-Numbers Game for a game graph
¢ = (I', A) and state that ¢ is game-gratifying if and only if it is a Coxeter-
Dynkin flower, as defined in Theorem 1 (La Florado Klasado). Next, we
introduced Quantum Dimension Polynomials, proved a novel result involv-
ing closed-form expressions of QDPs of types A,,, B,, C,, and D,,, and pro-
vided a few examples of QDPs. Lastly, we proved a nice identity for qdz’mf}}j
and applied some QDPs of type A, to a combinatorial problem involving
enumeration of certain k-element subsets of the set {1,2,...,n + 1}. These
statements and results demonstrate the power and beauty of some interesting
algebraic and combinatorial structures.

There are a few immediate possible directions to continue. First, do nice
closed-form expressions for the QDPS of types Eg, E7, Eg, Fy, or Go—namely,

the remaining integral Coxeter-Dynkin flowers of Figure 2.1-exist? Second,
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what other applications of QDPS are there? [Fis] and [Proc2| expose and
enumerate certain kinds of “symmetric plane partitions”—arrays of integers
that can be thought of as cubes stacked in towers above the arrays’ positions—
using QDPs of types B, and C,,. Are there other kinds of symmetric plane

partitions described by the QDPs of type D,,?
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Appendix A

Proofs for QDPs of types B,
and O,

Here we provide proofs of Cases B, and C, of the Quantum Dimension

Polynomial Identity (Theorem 3 of Section 2.2).

Proof. (Case B,,):

Consider our goal:

n—1n—1 n n n n—1 . .

: N 4541 —4] A2+ A+ 2n4+1— 10— 7],

d [ — q 7 J .
L HJH G+1—4, 1111 R2n+l—i—j],

i=1 j=i
(A1)
n—1n—1 i . .
N 1-—
Note that H H & J,rj + : g = qdz’mA"‘l. This falls in line with the
i=1 j=i 1= ’

fact that when viewing B,, as follows,
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71 72 3 Tn—2 TYn—1 Tn

removing 7, leaves a copy of A, ;. In fact, starting with firing sequence

(Y15 925 Y15 Y35 Y25 V15 - - -3 Vs Vet - - - » Y1) Produces N
/
Q;@
N N N »%
/ / / N N
o~ i3 p Y Y X\P\
o < N & N
T T T ST T ~
’;1 ’;2 ’;3 Yn—2 Yn—1 Tn ’

since the only time 7,_; is fired it has population A}™' 4+ (n — 1) and is
amplified by a factor of 2 before being added to (A, + 1) at 7,.

All that is left at this point is the second double product of equation A.1.
Continuing gameplay using firing sequence (Y, Yn—1, - - -, V15 Vs Y1y - - - s V2;

<3 Yy Yn—1; ’Yn)a we get




& d
‘(\J
o~ N
~ P N N 4
&7 o s s X‘P‘W’
N 0\ Qo) QA
~,ﬁ\ T P T T ~Vv
/\/)
71 Y2 Y3 Tn—2 Tn—1 Tn
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7/
((\J
S NZ
\\ /\ N X
Q RN N 1
% ><® N v v X‘P’b
N 9 > %
T 3, T T T S
M ° ° s e
Y1 Y2 3 Yn—2 Yn—1 Tn
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/
~
S ™~
N N N / Vv s
v v % & \X ~
N Q) G
/\'\ /\'\ /\'\ /\M \F\@/ /\M
/\/}
71 Y2 Y3 Yn—2 Yn—1 Tn
N Vv
N N N 7 7
/ / / Sy o N ><\/
N Q) G N
T T T P P }/
M
71 Y2 Y3 Tn—2 Tn—1 Tn
N N
N N N 4 4 N
/ / / §2 N /
S Q) G N N <
/\'\ /\'\ /\'\ /\'\ /\'\ /\'\
N> o . .
71 Y2 Y3 Yn—2 Yn—1 Yn

The underlined values in the above sequence do indeed match those in
the second double product of equation A.1, and so the Quantum Dimension
Polynomial Identity holds for type B,.

(Case C,):
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Consider our goal:

n—1n—1 n n+l . .
. N 4541 -1, AP+ AT +2n 4+ 2 —i — g,
wiinss =TT 11 T e
i=1 j=i ‘7+1_Z =1 j=i+1 2n+2—z ]]q
(A.2)
The proof proceeds similarly to the above of type B,,.
”1”1AJ+3+1—Z] 4
Note that H H = gdim)"~". This falls in line with the
=1 j=1i ‘7 + 1- Z

fact that when viewing C), as follows,

N N
N N N X X N
X X X /‘b > X
= jﬂ» j\‘b ~ ~ ~
’}71 ’}72 ’}73 o Yn—2 Yn—1 Tn ’

removing v, leaves a copy of A,_;. In fact, starting with firing sequence

(71; Y2, V13 V3 V2, V1 e - s Yn—15 - - - ;71) produces

Y N N
s s s N N
> P D / / v
o ~ ~ v 3~ o X
/} / / / / >~
71 Y2 Y3 Tn—2 Tn—1 Tn )

since the only time ~,_; is fired it has population 7'+ (n— 1) and is added
o (A + 1) at v,.

All that is left at this point is the second double product of equation A.2.

Continuing gameplay using firing sequence (Y, Yn—1, - - -, V15 Vs Yne1s - - - s V2;

3 Vs Yn—1; Vn), We get
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((\b
/
.(\A
x\) 4 b
B\ N
/ N « Qo q:l‘«\'/ ®
& / 7
ST X‘P““ @/q’ P P X\'@
D Qo)
/\PN ‘[‘\\W /j\% /\P /\P j‘:‘b
M
71 Y2 Y3 Tn—2 Tn—1 Tn
AN )
~
/ > / /\/ / S / S ><®
N Y N 1% Qo)
/\P /\P /\P /\P /\P ‘[‘:‘b
/\A - - -
Y1 Y2 Y3 Yn—2 Yn—1 Tn
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N
v
2 N
N N N ST s v
/ / / o N x><
N QA % «v
T T T AN
M
Y1 Y2 Y3 Tn—2 Tn—1 Tn

o)
7/
N ~
N N N 4 4
s s s PN Y
N S ) <
ST ST 2 2 /\'\@ ‘[\/
/\/}
71 Y2 Y3 Yn—2 Yn—1 Tn
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N N N 4 4 N
/ / / /‘1) /\/ /
N 37 Qo) U\ U\ U
/\P /\P /\P /\P /\P /\P
M P Py P e
71 2 3 Tn—2 Tn—1 Tn

The underlined values in the above sequence do indeed match those in
the second double product of equation A.2, and so the Quantum Dimension

Polynomial Identity holds for type C),.
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