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Abstract

The purpose of my work is to analyze the results of Monte Carlo simulations of various types

of polymers: a helical homopolymer and a flexible homopolymer. Specific applications of Monte

Carlo polymer simulations and parallel tempering replica exchanges are presented. Using temporal

analysis, I aim to measure the efficiency of each type of simulation as it relates to equilibration time.

For the helical homopolymer model, equilibration time is expanded upon to analyze the rate of

structure generation and relevant hyper-phase diagram. Stable states for helical homopolymers will

use data generated from parallel tempering replica exchange Monte Carlo simulations created by

Dr. MatthewWilliams. The stable states for flexible polymers will be analyzed and generated using

a simulation created by myself. Each simulation begins with a polymer in a random configuration;

as time progresses, changes to polymer structure are randomly induced to decrease the energy of

each structure until equilibrium is reached. Data collected after equilibrium is reached is used

to understand polymer behavior for each model and simulated temperature. Canonical analysis

of post-equilibration data yields a specific heat plot for the flexible polymer model and a hyper-

phase diagram for the helical polymer model. Analysis of equilibration data shows up to a 95%

decrease in equilibration time for the 2D replica exchange scheme over the 1D. Additionally,

the incorporation of Hamiltonian exchange into parallel tempering simulations for the helical

homopolymer model leads to an average of a seven-fold increase in the rate of unique structure

generation. Future research steps involve expanding the application of the 2D replica exchange

scheme to differing Monte Carlo simulations as well as the addition of measurable physical and

thermodynamic parameters to my simulation.
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1 Introduction

Generally, a Monte Carlo Parallel Tempering study performs an array of Monte Carlo simulations each

at a different temperature. These simulation threads attempt to exchange structures periodically [1].

The structure exchanges provide significantly increased simulation efficiency for low-temperature simu-

lation threads. This paper introduces a parallel tempering technique that simulates a two-dimensional

array of simulation threads across temperature and a model parameter of interest. Replica exchanges

are attempted between threads of differing temperatures and between threads of differing Hamilto-

nian [2, 3]. We compare the performance of this two-dimensional parallel tempering approach to that of

a set of independent one-dimensional parallel tempering simulations which perform exchanges across

temperature alone. The two-dimensional Hamiltonian replica exchanges allow threads to exchange

replica configurations across torsional values in addition to temperature values.

The first model, simulated by myself as the original research component of this study, is a coarse-

grained flexible homopolymer. Due to time constraints of a single semester for the implementation

and analysis of the flexible model [4], replica exchange is performed across only temperature. The

coarse-grained helical homopolymer model [5] is used as the test model for the two-dimensional replica

exchange algorithm. This is a favorable test model due to its inherent mesoscopic scale, secondary

and tertiary structure formation, and structural transitions across both temperature and the torsion

parameter [6]. Additionally, this model serves as a useful demonstration because of the biological

significance of helical structures [7]. Helical structures and bundles are integral components in a

plethora of biological macromolecules such as proteins, nucleic acids, polymers, and composites, among

others. The simulation technique presented here is highly flexible and can be easily implemented to

study a wide array of systems. The construction of the two-dimensional simulation space makes this

technique particularly useful in applications that aim to produce a hyper-phase diagram [8, 9, 10, 11].

The Hamiltonian Exchange which we implement across the second axis of our simulation space is

used in other studies with application to Monte Carlo and molecular dynamics simulations. Some ex-

amples include explicit water protein folding [12], drug-like molecule bonding [13], harmonic oscillator

system and data-guided protein folding [14], MERS-CoV structural dynamics [15] and Amyloid-beta

toxicity in Alzheimer’s patients [16]. Other studies have employed various methods for Parallel Tem-
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pering optimization such as careful tuning to temperature values to increase simulation speed and

efficiency [17, 18] and exchanging replicas between non-neighboring temperature threads [19].

For a parallel tempering simulation, efficiency is often quantified as the average round trip rate

for individual replicas [20, 21] or autocorrelation time [22]. To compare the one- and two-dimensional

simulations, we adopt two different measures of simulation efficiency: equilibration time and steps per

new round-trip traversal. In some instances, simulations proceed with low-temperature threads located

in local free-energy minima for a significant number of steps before the energy eventually decreases

and remains relatively constant. This can be a real problem for simulations in which the time it would

take to find the equilibrium structure is longer than the length of the simulation. We use systems that

are small enough to become stable well before the end of the simulation. The time taken to come to

equilibrium is measured for each simulation thread. The efficiency of data generation depends on the

number of uncorrelated configurations generated. Structures are considered uncorrelated when they

have melted and refrozen, meaning they have traversed from a thread at the highest temperature to a

thread at the lowest temperature. Since the simulation time in each run varies, the number of Monte

Carlo steps per uncorrelated structure is used as the primary measure of efficiency. Faster equilibration

times lead to higher acceptance probabilities of exchanges between threads, meaning that more unique

polymers can be simulated in a given amount of time. Higher frequencies of replica exchange also yield

more unique polymer configurations simulated.

We will demonstrate the use of the data generated by the two-dimensional parallel tempering

simulation to produce polymer structures from many different canonical ensembles, analysis of the

energy and specific heat for canonical ensembles, and a hyper-phase diagram representing the entire

simulation space. Data could be further used to produce a microcanonical analysis or to gain further

insight into phase transitions [23, 24]. Microcanonical analysis allows measurement of the density of

states and analysis of inflection points.

This paper is organized as follows. In the Theoretical Background section, we introduce the ap-

plication and background of one-dimensional and two-dimensional parallel tempering algorithms for

representing simulated helical and flexible homopolymers in addition to the description of the Monte

Carlo method of sampling the virtual structural environment. The Simulation Methodology section
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details the methodology of both the flexible and helical homopolymers. Data details analysis of data

obtained from each type of polymer simulation with a focus on comparison and discussion between

one-dimensional and two-dimensional parallel tempering or replica exchange algorithms and their cor-

relation to simulation efficiency. The paper is concluded by the summary and future research steps in

Conclusions.

2 Theoretical Background

Polymers, simply defined as a collection of bonded monomers, make up materials ranging from polyester

to nucleic acids found within all life. For this reason, polymer chemistry and subsequently its molecular

properties are difficult and tedious to study in a laboratory environment. Simulations such as Monte

Carlo and Molecular Dynamics allow efficient study of thermodynamic and structural properties for

simulated models. Fine-grained polymer models quantify energy between each individual atom within a

molecule of a polymer chain, while coarse-grained models treat repeated units of the chain as individual

monomers. Therefore, to simulate real systems, a measure of energy must be calculated and used to

quantify configurations in thermodynamic equilibrium.

Polymer energy, when modeled in simulations, are characterized by a Hamiltonian. The Hamilto-

nian quantifies each force that acts on a polymer and assigns a corresponding energy value to it. In

this work, we consider two distinct models: a flexible homopolymer and a helical homopolymer. Both

the flexible and helical homopolymer models chosen contain Hamiltonians for known atomic forces.

These include the Lennard-Jones potential, an effective potential representing the Van der Waals and

Pauli Exclusion Principle, and a FENE potential which treats monomers as point masses and bonds

as springs. The helical polymer model contains additional potentials in both the torsion and bending

energy which impart a helical order to the structures. The bending potential is associated with bond

angles, while the torsion potential is associated with the dihedral angles formed by each series of three

bonds. For the helical study, the data presented correspond to polymer chains of length N = 30. This

system provides a sample model to accurately compare simulation methods.

Computational physics simulations contain many other useful parameters that correspond to fea-

tures in physical systems. Some of these include the excluded volume, the LJ Fraction, three-body
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interaction coefficient, and the aspect ratio of monomers. Due to the coarse-grained model chosen

for these studies, the aspect ratio b/d holds no relevance, as the size of monomers does not vary

across the length of the polymer chain. The excluded volume v and three-body interaction coefficient

w are more applicable in simulations of polymer reactions with given substrates. Future studies of

reactions of the flexible and helical homopolymer models would benefit from tracking parameters v

and w. In addition, the next steps to further the research towards the quantification of a real system

rather than theoretical would involve the inclusion of thermodynamic properties of each monomer to

simulate known configurations of polymer chains. One common example of a polymer is polystyrene,

a hydrocarbon plastic found in styrofoam, food packaging, and lab equipment. For a coarse-grained

simulation of polystyrene, for example, each monomer of a N -length polystyrene chain would contain

CH2 molecules with branching side-chain phenyl (CH) groups. Properties of the elements Hydrogen

and Carbon, such as atomic radius, atomic weight, and electronegativity, among others, would need

to be incorporated into the simulation and the Hamiltonian of the system.

The benefit of simulating generalized models lies in their simplicity and the ability to study the

general behaviors of models. Modeling the interaction of two specific materials, such as polystyrene

and a substrate designed to dissolve it, yields results that are only applicable to that specific reaction.

Conversely, a study of the general behavior of polymers using known physical forces yields insight into

how a polymer would react in a given environment regardless of its material properties. In addition,

simpler, coarse-grained models require less computation time to complete, meaning that results can

be analyzed and interpreted more quickly. For more comprehensive research on other models, other

parameters such as the excluded volume and overlap probability of monomers could be useful [25].

Since this research evaluates the effectiveness of a simulation technique, interpreting and evaluating

the simulation data is more essential than the specific application. The two-dimensional parallel

tempering replica exchange can be applied to any Monte Carlo simulation and the torsion value Sτ

can be substituted for any useful parameter.
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3 Simulation Methodology

3.1 Parallel Tempering Monte Carlo Simulations

The helical homopolymer simulation in this paper consists of an array of simulation threads with each

thread generating a canonical ensemble at temperature T and obeying Hamiltonian H. This two-

dimensional array of threads can be visualized as a grid shown in Fig. 1. The flexible model threads in

this study vary solely across temperature. Threads independently proceed with Monte Carlo updates.

Each update changes the energy of the structure by ∆E. Updates are accepted with probability

Pacc = e−β∆E , where β = 1/T .

Simulations denoted as ”displacement only” use only single monomer displacement updates. Sim-

ulation efficiency can be moderately improved by the addition of multiple global update types. These

simulation runs are denoted ”displacement + global” and include simultaneous displacement of a col-

lection of monomers, change of a single bend angle by rotation of one side of the polymer around an

axis perpendicular to neighboring bonds, and changing of a single dihedral angle by rotation of one

side of the polymer around an axis defined by one bond.
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Figure 1: A representation of parallel tempering exchanges is shown for the helical homopolymer

model. Threads span a space defined by the torsion parameter, Sτ , and temperature values. Exchanges

between neighboring threads with varied temperatures are shown with black arrows and Hamiltonian

exchanges are shown with gray arrows. The orange path is an illustrative example of the random walk

performed by a single replica in the two-dimensional parallel tempering approach.

Both types of simulations employ the use of parallel tempering [26, 27] to decrease computation

time. This method involves simulating multiple polymers simultaneously at different temperature val-

ues by dedicating a single thread (a.k.a. core) to each simulation. For a standard 8-core processor, this

equates to 8 polymers simulated at once across different temperature values. This vastly decreases sim-

ulation time for lower-complexity polymer models including the two presented in this paper which does

not require immense processing power from multiple cores. This was one of the most challenging parts

of programming my simulation because of the limited application and previous research surrounding
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parallel tempering in Python.

Two different replica-exchange Monte Carlo techniques are utilized for the helical polymer model.

In the temperature-only approach, which will be referenced as one-dimensional, simulation threads

attempt replica exchange with an adjacent higher temperature thread and then with an adjacent lower

temperature thread. This sequence of replica exchanges is repeated at each Monte Carlo step. In the

flexible polymer model, only one-dimensional replica exchanges are attempted. In Fig. 1, these are

depicted as black arrows.

3.2 Hamiltonian Exchange

The second type of replica exchange in this study involves exchanging structures across threads at

neighboring Hamiltonians. The Hamiltonian for each replica, described in the theoretical background

section, is then used as a parameter to perform exchanges. Attempting replica exchanges is a form

of Monte Carlo time steps [28] utilized to traverse a two-dimensional space defined by temperature

and a suitable model parameter. Replica exchange serves to prevent threads from conforming to

structures ”stuck” in local minima of the free energy landscape of a polymer. At each fixed interval of

a Monte Carlo time step, adjacent threads attempt to exchange with one another to ”pass” structures

to neighboring threads. Along the free energy landscape of the polymer model, there exists an ideal

global minimum energy that a polymer can reach. Since the nature of Monte Carlo simulations is

random moves, sampling more of the free energy landscape of the polymer model serves to better

represent structures of a particular canonical ensemble. Final thread structures are heavily influenced

by the temperature of the system which corresponds to the random kinetic energy of the polymer and

its environment. The total energy of a replica is represented in a Hamiltonian H shown in equation 1.

H(X) = SLJ

∑
i>j+1

vLJ(rij) + SFENE

∑
i

vFENE(ri i+1)

+ Sτ

∑
l

vtor(τl) + Sθ

∑
k

vbend(θk) (1)

To accomplish Hamiltonian exchanges across neighboring replicas (directly adjacent in either tem-

perature or torsion potential Sτ , we employ the Metropolis algorithm, first employed by Nicholas

Metropolis in his work on nuclear reactors [29]. Initially, a uniformly distributed random number
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between 0 and 1 Prand is generated and compared to the acceptance probability Pacc given in equation

2.

Pacc =
eβiHi(Xi)eβjHj(Xj)

eβiHi(Xj)eβjHj(Xi)
. (2)

In the case of a temperature exchange, Hi = Hj ≡ H and Equation 2 becomes

Pacc,T = e(βi−βj)(H(Xi)−H(Xj)). (3)

For the Hamiltonian exchange, βi = βj ≡ β and Equation 2 becomes

Pacc,H = eβ(Hi(Xi)+Hj(Xj)−Hi(Xj)−Hj(Xi)). (4)

If Prand is greater than Pacc then a Hamiltonian exchange is made. This occurs once every 500

moves as a Monte Carlo time step. Changes in H within the flexible polymer model represent a

change in the temperature T . In the helical polymer model, changes in H represent a change in the

torsion energy scale factor Sτ in addition to the aforementioned temperature exchange. Herein lies the

novelty of Dr. Williams’ research: the ability to perform replica Hamiltonian exchanges across both

temperature and torsion values. Hamiltonian exchanges are represented by gray arrows in Fig. 1. In

this way, replicas perform a two-dimensional random walk in the Sτ - T space. While two-dimensional

Hamiltonian exchanges have been applied to other types of simulations such as Molecular Dynamics,

the nature of the Monte Carlo simulation creates a significant difference in the performance of the

Hamiltonian Exchange. The two-dimensional Hamiltonian exchange can be expanded to any suitable

model parameter, not just the torsion energy scaling factor Sτ .

3.2.1 FENE potential

Bonded monomers interact according to the finitely extensible nonlinear elastic (FENE) potential

[30, 31]. The FENE potential, given in Equation 5, depends solely on the distance between the two

bonded monomers, r. A graph of this function is shown in Fig. 2. The FENE potential quantifies the

mechanical energy of a given polymer. It treats each monomer as a point mass and each bond as an

ideal spring. A minimum bond energy is achieved when r = r0 ≡ 1 and the maximum deviation from

this value is R ≡ 3/7. Any move which separates two bonded monomers by more than r+R or brings

them closer than r−R is immediately rejected. This is due to equation 5 and its inherent logarithmic
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quantity. Since the definition of a logarithmic function is a positive quantity to an exponential degree,

any negative quantities do not lie within the domain of the function. For equation 5, this corresponds

to any value with a magnitude greater than r +R.

3.2.2 Leonard Jones potential

Each monomer also interacts with all other monomers according to the Lennard-Jones (LJ) potential.

A graph of this potential is shown in Fig. 2. The Lennard-Jones potential r two forces: a short-

range repulsive force due to overlapping electron orbitals and an attractive Van Der Waals force [32].

This relationship is given in equation 6. This function reaches a minimum when monomer separation

approaches a distance r0. We induce this by utilizing a parameter σ ≡ 2−1/6r0 equal to the theoretical

minimum value of vLJ . Fig. 3 shows the ideal characteristic function of the Lennard-Jones potential.

In order to avoid discontinuities in the Hamiltonian energy calculation, we shift the Lennard-Jones

potential by a constant value vc = 4[(σ/rc)
12 − (σ/rc)

6].
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Figure 2: A visual representation of the Lennard-Jones and FENE potential values used in both the

flexible and helical homopolymer models.

3.3 Helical Homopolymer Simulation Methods

A portion of this study employs the use of a coarse-grained homopolymer model which is designed

to generate helical secondary structures. In past work, this model has been shown to also exhibit

tertiary structures consisting of two- and three-helix bundles. Tertiary structure formation depends

on the details of the model parameters. The energy of a polymer chain with N monomers includes

four potentials: a bonded interaction between neighboring monomers along the polymer chain, a

non-bonded interaction between monomers in physical proximity, a bending potential, and a torsion

potential. In this study, we present data for polymer chains of length N = 30. This system provides

a sample model to accurately compare simulation methods.
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Figure 3: A visual representation of the helical homopolymer model generated by Matthew Williams

and Michael Bachmann [5].

3.3.1 Torsion and bending potentials

The helical order is imparted using bending and torsion potentials given by Equations 7 and 8, respec-

tively. The bending potential depends on the bond angle of successive bonds, θ. There is a potential

minimum for θ = θ0 ≡ 1.742. The torsion potential depends on the successive dihedral angles, τ .

There is a potential energy minimum when τ = τ0 ≡ 0.873.

vFENE(r) = log{1− [(r − r0)/R]2} (5)

vLJ(r) = 4[(σ/r)12 − (σ/r)6]− vc (6)

vbend(θ) = 1− cos(θ − θ0) (7)

vtor(τ) = 1− cos(τ − τ0) (8)

The total potential energy of a particular polymer configuration X can be calculated using the

Hamiltonian given in Equation 1. The Hamiltonian consists of all four potentials applied across the

entire polymer with each potential multiplied by an energy scale. We use the standard values of

SFENE = −(98/5)r20R
2/2 and SLJ = 1 for the FENE and LJ energy scales. A bending energy scale of

Sθ = 200 is used for all simulation threads. In an effort to analyze an array of systems with different

tertiary structure formations, values between 5 and 14 are used for Sτ .
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3.4 Flexible Homopolymer Simulation Methods

To gain a broader understanding of the methodology behind the helical homopolymer simulation

previously analyzed by the research team, I was tasked with creating another well-studied model of

polymer simulation: the 13-monomer flexible homopolymer. The flexible polymer model adheres to

only the Lennard-Jones and FENE potentials. Consequently, it forms entirely different structures

than the helical homopolymer model and exhibits unique thermodynamic properties. The original

component of my research lies in the language the simulation is built in. While Dr. Williams’ helical

homopolymer simulations were programmed in the language of C++, my simulation was programmed

entirely within Python, an open-source and easily accessible language. This simulation was developed

and improved upon over the course of the Spring 2023 semester. In total, the simulation, which consists

of three different programs, is about 600 lines of code and took around 6 weeks to complete.

The flexible homopolymer simulation is a simplified version of the helical homopolymer model. This

was chosen due to the time constraint of a single semester for the development and implementation

of the simulation. The flexible model adheres to the FENE and Lennard-Jones potentials but is not

constrained by the bending and torsion angles. Therefore, the flexible polymer model Hamiltonian

consists of the FENE and LJ potentials given in equations 5 & 6. The total energy is represented as

a Hamiltonian Hf shown in equation 9.

Hf (X) = SLJ

∑
i>j+1

vLJ(rij) + SFENE

∑
i

vFENE(ri i+1) (9)

Since the incorporation of torsion and bending potentials cause a polymer to conform to helical

shapes, the lack thereof in the flexible model forms an entirely different set of structures. With a low-

temperature 13-monomer chain, the predicted lowest energy state is an icosahedron, a platonic solid

containing 30 edges, 20 faces, and 12 vertices. In this 13-monomer configuration, twelve monomers

form the vertices, with the thirteenth residing in the shape’s center. This shape exhibits platonic

symmetry with each of its 20 triangular faces. Fig. 4 was plotted in Mathematica, with green spheres

representing monomer coordinates output by my simulation. The monomers are treated as point

masses mathematically but are modeled with a finite size to show the structure of the polymer.
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Figure 4: Depiction of final polymer structure at T = 0.2 generated by the developed flexible polymer

simulation. Polymer structures from my simulation were plotted using Mathematica code developed

by Dr. Williams.

At higher temperatures, the flexible model forms a globule shape, as shown below in Figure 5.

This structure’s monomers are also point masses mathematically but are plotted with a finite size to

visually represent the polymer structure. This structure lacks the order that structures conform to

in lower temperatures and is considered a ”liquid” state. Using canonical analysis, it is possible to

identify where these structure transitions occur across simulated temperature values.
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Figure 5: Depiction of final polymer structure at T = 0.7613 generated by the developed flexible poly-

mer simulation. Polymer structures were plotted using Mathematica code developed by Dr. Williams.

4 Data

4.1 Equilibration Time

One of the first tasks given by my research mentor in the analysis of 2-D parallel tempering replica

exchange simulations was plotting the energy values of the helical polymer over time. This was done in

order to construct the hyper-phase diagram of the helical homopolymer model, which will be discussed

later in this section. Hyper-phase diagrams, which graphically illustrate the thermodynamic behavior

of polymer models across an array of temperature values, must use data that is considered to be at

thermodynamic equilibrium.

The determination of thermodynamic equilibrium, however, can be characterized by multiple data

analysis algorithms. The research team evaluated multiple algorithms for equilibration determination.

The first characterized a data time series as ”in thermodynamic equilibrium” when all values of a

400-point moving average oscillated within one standard deviation of the last 10% of the energy time

series. This algorithm correctly identified thermodynamic equilibrium for most replicas but failed in

cases of a replica ”jumping” from one energy value to another throughout the time series. An example

of this is shown below in Figure 6.
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Figure 6: Energy of the helical homopolymer model plotted against Monte Carlo time steps. Equi-

libration time was calculated using the first equilibration algorithm. This specific thread corresponds

to a torsion parameter of 10 and a temperature value of 0.303.

The algorithm currently in use for determining thermodynamic equilibrium involves first identifying

the global minimum of the data time series. Because the goal of the model is to reach a state of

thermodynamic equilibrium by the end of the simulation, the global minimum energy value is assumed

to be at or near a stable polymer configuration. Once the global minimum, Eg, is found, the average

of all time series energies after the global minimum is computed. This is referred to as Ē. The value

teq is considered to be the point at which the rolling average of the energy value first crosses below

Ē. For each value of Sτ considered in the simulation, we find the thread with the maximum teq. This

maximum, tmax, is calculated for each value of Sτ . The maximum time to equilibrium is given for the

1D and the 2D simulation in Table 1.

In this specific model, simulations containing exclusively 1D parallel tempering exchange schemes

exhibit lengthy equilibration times. Fig. 7 shows the energy time series and equilibration times teq for

both the 1D and 2D exchange scheme within the thread at T = 0.2 and Sτ = 11. For this example,

we see a sharp decrease in equilibration time for the 2D simulation.
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Figure 7: Energy of a one- and two-dimensional parallel tempering simulation vs. Monte Carlo time

step. This data comes from the displacement-only run. For this graph, Sτ = 11 and T = 0.2. Solid

lines represent rolling averages with a window size of 250 time-series measurements. teq is analytically

determined by the stability algorithm and plotted as a vertical dashed line.

The torsion strength value Sτ ranges from 5 to 14 in this simulation, with low Sτ threads favoring

multi-helix bundles and high Sτ threads favoring single-helix bundles. At intermediate Sτ values (9-

11), random coil-like structures begin to appear due to the inability of the simulation to find a structure

with lower energy in both single-helix and multi-helix bundles. This leads to longer equilibration times

which causes the likelihood of replica exchange between neighboring replicas to decrease. Therefore,

a given structure would take longer to walk the two-dimensional space from a ”melted” state to a

low-temperature thread.

4.2 Simulation Efficiency

Simulation efficiency can be quantified in multiple fashions for simulations with a sizable number of

parameters. In other notable examples, efficiencies were related to the average round-trip rate for

individual replicas. In this study, we characterize efficiency as a function of the average number of
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Table 1: Equilibration time for the 1D and the 2D displacement only parallel tempering simulation.

Sτ tmax1D
tmax2D

×106 ×106

5 25.3 49.8

6 49.2 48.4

7 35.4 45.3

8 109 54.0

9 150 47.8

10 296 50.6

11 1020 49.4

12 559 39.7

13 1.88 1.74

14 3.42 4.64

Monte Carlo steps per new structure generated for each replica, tM . At each torsion value, low-

temperature threads identify each new structure generated and assign a unique identifier to each one

and a time stamp. As Monte Carlo time steps pass and replica exchanges occur between neighboring

threads, a replica will ”walk” through the two-dimensional space. High-temperature threads then

identify structures as ”melted”. If a low-temperature thread receives a ”melted” structure, the traverse

time for that replica is logged. This process is done at each torsion value Sτ as shown in 8 for both the

one-dimensional and two-dimensional replica exchange schemes. tM represents the average number of

time steps per new and unique generated structure.
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(a) Displacment-only

(b) Displacment + Global

Figure 8: Average number of time steps per unique configuration measured against the torsion value

of the thread for 1-D and 2-D parallel tempering Hamiltonian exchanges for helical homopolymers.

The solid points represent the average number of time steps between the appearance of a unique replica

structure after energy equilibration at corresponding torsion values shown with sampling errors. (a)

corresponds to displacement-only simulations and (b) represents simulations with displacement +

global updates.
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As shown in Figure 8, the two-dimensional replica exchange scheme decreases tM for all torsion

strength values between 5 and 14 with the largest decreases occurring at intermediate torsion values.

Across all torsion values, the implementation of a two-dimensional exchange scheme leads to a seven-

fold increase in the rate of generated structures in the helical model. This value holds true for both

the displacement-only and displacement + global update schemes.

4.3 Canonical Analysis

In addition to data collected on the effectiveness of simulation techniques, the prevalent structures

of polymer models are useful in visualizing free energy. To determine structural transitions across

temperature values, a specific heat vs. temperature plot is used. Peaks in the specific heat of the

polymer (dE/dT ) correspond to transitions in structure types. Analyzing peaks in the specific heat

at each torsion value allow a two-dimensional representation of the range of polymer configurations.

For the flexible polymer model, the specific heat plot can be found below in Figure 9. The Figure

shows a clear maximum occurring at T ≈ .35, indicating a transition from an icosahedral structure to

a globular structure.
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Figure 9: Specific heat v. Temperature plot generated from analysis of post-equilibration data of 26

unique temperature values of the flexible polymer model.

A two-dimensional hyper-phase diagram can be made for the helical polymer model by overlaying

multiple specific heat vs. temperature plots for each torsion value and identifying their local maxima.

This is shown below in Figure 10.
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Figure 10: Hyper-phase diagram generated for the helical polymer model across torsion and temper-

ature values. The yellow, green, and red polygons correspond to structures exhibiting helical bundles,

a single helix, and random coil-like structures, respectively.

5 Conclusions

Flexible and helical homopolymer models, simulated in various programming languages, provide unique

insight into the thermodynamics of polymer structures. The generated two-dimensional hyper-phase

diagram shows all possible structural phases present in the helical homopolymer model. To obtain this

data, equilibration time was analytically determined for each replica. The equilibration time of the 2D

parallel tempering exchange scheme decreased by as much as 95% as compared to the 1D simulation

shown in Table 1. Efficiency improvements to Monte Carlo simulations, while specifically applied

to flexible and helical homopolymer models in this study, allow more simulations at quicker speeds.

For the helical model, incorporation of the Hamiltonian exchange into parallel tempering simulations

leads to an average of a seven-fold increase in the rate at which new structures are generated. This is

most apparent at intermediate torsion strength parameter values representing transitional structures.
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While this specific study applied two-dimensional replica exchange to a helical homopolymer model,

any Monte Carlo simulation could utilize this across a suitable model parameter. Additionally, it would

be interesting to expand my developed program to a two-dimensional Hamiltonian exchange parallel

tempering scheme as well as incorporate end-to-end length, a measurable physical dimension, into

canonical analysis. Further research steps could involve simulating physical polymers by incorporating

the thermodynamic and structural properties of elements into polymer models or exploring additional

applications of two-dimensional replica exchange Monte Carlo simulations.
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