
Murray State's Digital Commons Murray State's Digital Commons

Murray State Theses and Dissertations Graduate School

2020

Evaluating an Ordinal Output using Data Modeling, Algorithmic Evaluating an Ordinal Output using Data Modeling, Algorithmic

Modeling, and Numerical Analysis Modeling, and Numerical Analysis

Martin Keagan Wynne Brown
Murray State University

Follow this and additional works at: https://digitalcommons.murraystate.edu/etd

 Part of the Analysis Commons, Applied Statistics Commons, Numerical Analysis and Computation

Commons, Other Applied Mathematics Commons, Other Mathematics Commons, Other Statistics and

Probability Commons, Probability Commons, and the Statistical Models Commons

Recommended Citation Recommended Citation
Brown, Martin Keagan Wynne, "Evaluating an Ordinal Output using Data Modeling, Algorithmic Modeling,
and Numerical Analysis" (2020). Murray State Theses and Dissertations. 168.
https://digitalcommons.murraystate.edu/etd/168

This Thesis is brought to you for free and open access by the Graduate School at Murray State's Digital Commons.
It has been accepted for inclusion in Murray State Theses and Dissertations by an authorized administrator of
Murray State's Digital Commons. For more information, please contact msu.digitalcommons@murraystate.edu.

http://www.murraystate.edu/
http://www.murraystate.edu/
https://digitalcommons.murraystate.edu/
https://digitalcommons.murraystate.edu/etd
https://digitalcommons.murraystate.edu/graduate
https://digitalcommons.murraystate.edu/etd?utm_source=digitalcommons.murraystate.edu%2Fetd%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/177?utm_source=digitalcommons.murraystate.edu%2Fetd%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.murraystate.edu%2Fetd%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=digitalcommons.murraystate.edu%2Fetd%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=digitalcommons.murraystate.edu%2Fetd%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/122?utm_source=digitalcommons.murraystate.edu%2Fetd%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=digitalcommons.murraystate.edu%2Fetd%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/215?utm_source=digitalcommons.murraystate.edu%2Fetd%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/215?utm_source=digitalcommons.murraystate.edu%2Fetd%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/212?utm_source=digitalcommons.murraystate.edu%2Fetd%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/827?utm_source=digitalcommons.murraystate.edu%2Fetd%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.murraystate.edu/etd/168?utm_source=digitalcommons.murraystate.edu%2Fetd%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:msu.digitalcommons@murraystate.edu

Evaluating an Ordinal Output using Data Modeling,
Algorithmic Modeling, and Numerical Analysis

A Thesis

Presented to

the Faculty of the Department of Mathematics and Statistics

Murray State University
Murray, Kentucky

In Partial Fulfillment

of the Requirements for the Degree

of Master of Science

by

Martin Brown

May 2020

Evaluating an Ordinal Output using Data Modeling,
Algorithmic Modeling, and Numerical Analysis

DATE APPROVED:

Dr. Donald Adongo, Thesis Advisor

Dr. Christopher Mecklin, Thesis Advisor

Dr. Manoj Pathak, Thesis Committee

Dr. Maeve McCarthy, Graduate Coordinator, Jesse D. Jones College of Science,
Engineering, and Technology

Dr. Claire Fuller, Dean, Jesse D. Jones College of Science, Engineering, and
Technology

Dr. Robert Pervine, University Graduate Coordinator

Dr. Timothy Todd, Provost

Acknowledgements

I would like to thank the Mathematics and Statistics Department at Murray State

University for providing the most rewarding and interesting experience. So many

individuals have influenced me in profound ways, and I would like to mention a few

of them.

To Dr. Donald Adongo, thank you for making my transition to America as smooth

as possible. I have enjoyed our long conversations in your office, and you have made

me feel welcomed and comfortable at Murray State. Also, thank for your support in

my classes and thesis. Your enthusiasm in helping students is something I will never

forget.

To Dr. Christopher Mecklin, thank you for introducing me to machine learning.

You helped me to discover my passion and develop grit. Also, thank you for your

support in my thesis and being available at a moment’s notice to advise me during

the tougher moments.

To Dr. Manoj Pathak, thank you for introducing me to the world of statistics; I

did not know what I was missing. Also, thank you for your help during the thesis

process.

To Claire Ghent, thank you for your help throughout my studies, and thank you

for the endless grammer corrections and proof readings as well as bringing me tea

during the writing process.

To my parents, Lindsay Brown and Elaine Brown, thank you for giving me the

opportunity to study my Master’s degree. You have both supported and provided

strong encouragement throughout all my endeavors. I could not be where I am today

without your help.

iii

Abstract

Data and algorithmic modeling are two different approaches used in predictive

analytics. The models discussed from these two approaches include the proportional-

odds logit model (POLR), the vector generalized linear model (VGLM), the clas-

sification and regression tree model (CART), and the random forests model (RF).

Patterns in the data were analyzed using trigonometric polynomial approximations

and Fast Fourier Transforms. Predictive modeling is used frequently in statistics and

data science to find the relationship between the explanatory (input) variables and

a response (output) variable. Both approaches prove advantageous in different cases

depending on the data set. In our case, the data set contains an output variable

that is ordinal. Using grade records from Murray State University, the goal is to find

the best predictive model that can implement an ordinal output by means of data

modeling and algorithmic modeling.

To train the models, k-fold cross validation is used to find the optimal tuning

parameters and performance for each of the models. The logarithmic loss (logLoss)

performance metric is utilized to determine which method has the top predictive

accuracy. A comparison of each statistical model and a look at alternative methods

is discussed.

iv

Contents

1 Introduction 1

2 Training and Testing 3

2.1 Logarithmic Loss . 4

2.2 K-Fold Cross Validation . 6

2.3 Training with the caret Package . 9

2.3.1 Cross Validation for POLR . 10

2.3.2 Cross Validation for the Vector Generalized Linear Model . . . 11

2.3.3 Cross Validation for CART 12

2.3.4 Cross Validation for Random Forests 15

3 Proportional-Odds Logistic Regression 17

3.1 Implementing POLR in R . 19

3.2 Prediction and logLoss for POLR . 23

4 Vector Generalized Linear Model 24

4.1 Implementing VGLM in R . 26

4.2 Prediction and logLoss for VGLM . 28

5 Classification and Regression Tree Model 29

5.1 Implementing CART in R . 33

5.2 Prediction and logLoss for CART . 36

v

6 Random Forests Model 37

6.1 Implementing Random Forests in R 40

6.2 Prediction and logLoss for Random Forests 41

7 Trigonometric Functions and Fourier Series 42

7.1 Implementing Trigonometric Functions in

MATLAB for the Start Times . 44

7.2 Implementing Trigonometric Functions in

MATLAB for the Years Since 2003 49

8 Comparing the Models 54

Appendices 57

A R Code for Training and Testing 57

A.1 Data Set Up . 57

A.2 Training the Models Code . 58

B R Code for POLR 62

C R Code for VGLM 63

D R Code for CART 64

E R Code for Random Forests 65

F MATLAB Code for Trigonometric Polynomials 66

vi

1

Chapter 1

Introduction

Leo Breiman [1] explains that statistical modeling can be split into two different

cultures, data modeling and algorithmic modeling. Breiman uses the analogy of a

black box that generates the data, where inputs, Xi for some i, enter the black

box producing the output, Y . Data modeling involves making assumptions for the

internals of the black box then builds a model based on these assumptions. This is

the approach that statisticians traditionally employ. Algorithmic modeling treats the

internal nature of the black box as unknown and alternatively finds an algorithm that

takes the inputs to predict the output based on patterns found in the data.

Questions on prediction are more prevalent than ever. From using relevant factors

to predict consumer shopping habits to using relevant factors to predict if a person

has diabetes, we are able to answer more questions with the ever-increasing amount

of data. The main goal of this thesis is to determine the best model, in terms of

predictive accuracy, that predicts an ordinal output. In our case, the output variable

is student grades collected from two different courses offered by the mathematics

and statistics department at Murray State University. Specifically, the models are

chosen to deal with the ordinal output variable commonly referred to in supervised

machine learning as classification. In addition, we combine the fields of statistics,

machine learning, and numerical analysis to evaluate our ordinal data. As important

2

as accuracy is, a discussion on the interpretability of each model is included because

an explanation of results is important when including a non-technical audience.

The arrangement of this thesis begins in chapter 2 with a description of the

data used as well as an introduction of the concepts of the logarithmic loss perfor-

mance metric (logLoss) and k-fold cross validation (kFCV). In chapter 3, we begin

determining the best method to prognosticate student grades with a detailed descrip-

tion of the proportional-odds logistic regression model (POLR). In chapter 4, the

vector generalized linear model (VGLM) is considered to evaluate the proportionality

of our data set. In chapter 5 and 6, we investigate the classification and regression tree

(CART) model and the adapted random forests model (RF), respectively. In chapter

7, a numerical anaylsis study is introduced using trigonometric approximation poly-

nomial and Fourier series to analyze the trends in the data. Lastly, a comparison of

the methods is discussed and an examination into further methods for potential use

is conducted in chapter 8.

3

Chapter 2

Training and Testing

In this thesis, the goal is to predict student grades obtained from data records

from Murray State University and compare the best predictive model for the ordinal

output. The output variable of student grades is ordinal, which Fox et al. [2] describes

this as categories that have a natural order. This is different from multinomial data,

where the data set is categorical but does not have an intrinsic order. An example of

multinomial would be a person’s favorite color such as green, blue, or red.

This study omits students who have audited a course and combines the students

who have received the grade E and who withdrew from the course with a W on their

transcript. Therefore, the data set used throughout the thesis contains an ordered

factored output variable as displayed in (G). Models involving this type of output are

referred to as multi-class classification problems.

EW < D < C < B < A. (G)

The input variables in consideration are:

• ‘Semester’: a factor indicating if the class was held in ‘Spring’ or ‘Fall’;

• ‘StartTime’: a factor indicating the start time of the class;

• ‘Size’: a number indicating the number of students in the class;

2.1. Logarithmic Loss 4

• ‘YrSince2003’: a number indicating how many years since 2003 that the class

was taught;

• ‘Class’: a factor indicating if the class is Introduction to Probability and Statis-

tics ‘MAT135’ (called ‘STA 135’ since 2016), or, Calculus and Analytic Geom-

etry I ‘MAT250’,

• ‘Day’: a number indicating the number of days a week that the class meets.

With all the different models, we require a performance metric to be able to

determine which method is best suited for predicting student grades (G). The logLoss

function is a consistent metric that deals well with multi-class classification problems

[3] and can be utilized in areas from machine learning to numerical analysis. Since

we cannot wait for a new set of data to test the model without waiting for months

or years, we require the data set to be split into a training set and a testing set

in an attempt to prevent the models from overfitting the data. The model will be

performed on the training set and validated on the testing set, which is a completely

seperate portion of the data set and is not used in the training set.

To train the model, we perform k-fold cross validation demonstrated in chapter

2.2. To train our model and calculate the logLoss metric, we use the ‘caret’ package

[11] in the statistical program R. MATLAB is used to implement the trigonometric

polynomials.

2.1 Logarithmic Loss

Logarithmic loss, or commonly referred to as logLoss, is a metric that penalizes

the false classifications given by a model. This works especially well for multi-class

classification where the method assigns a probability to each of the classes for all

observations [3]. Therefore, the logLoss function was chosen over traditional accuracy

metrics because we are not predicting a binary response. Let M be the number of

2.1. Logarithmic Loss 5

classes in the data set and let N be the number of observations belonging to our

classes M . In our case, we have M = 5 classes in (G), and we have N = 1760

observations. Then, the logLoss function is given by

logLoss = − 1

N

N∑
i=1

M∑
j=1

yij ln(pij), (2.1.1)

where yij = {0, 1} indicates if observation i belongs to class j, and pij indicates the

probability of observation i belonging to class j [3]. Also, ln refers to the natural log.

Note that the logLoss will only contain the summation of misclassified observations

and will heavily penalize the observations that were confident and incorrect [5]. A

model that perfectly predicts student grades (G) will have a logLoss of zero therefore,

the logLoss takes on values [0,∞), i.e. no upper bound. A model with higher accuracy

has a logLoss closer to zero thus, we must minimize the logLoss to improve the

accuracy of our model.

Figure 2.1.1: Plot of logLoss against predicted probability

In figure 2.1.1, the predicted probability is zero for incorrect predictions and one

for correct predictions. The logLoss gradually decreases as the predicted probabil-

ity increases, and on the left of figure 2.1.1, its apparent that the model is heavily

2.2. K-Fold Cross Validation 6

penalized on making confident incorrect predictions.

Since we have M = 5 classes, we can calculate the “dumb” or non-informative

logLoss for our classification problem [6]. This is the same as assuming that students’

grades are uniformly distributed, where each grade has a 20% chance of occuring.

Hence, the “dumb” logLoss value is

logLoss = −ln
(1

M

)
= −ln

(1

5

)
= ln(5) = 1.6094.

We can compare the subsequent models to the uniform distribution of the grades (G),

which has a logLoss of 1.609437912. Since the distribution of grades is not exactly

uniform, as certain grades are more prevalent and others less prevalent in the actual

data, the “dumb” logLoss for grade predictions will be slightly less than ln(5). Let us

consider a situation when there are 15% A grades, 30% B grades, 25% C grades, 10%

D grades and 20% EW grades. Then, the non-informative logLoss can be calculate

using the entropy function (5.0.2), which will be defined in chapter 5.

logLoss = −(0.15 ln(0.15) + 0.30 ln(0.30) + 0.25 ln(0.25) + 0.10 ln(0.10)

+ 0.20 ln(0.20)),

= 1.5448.

2.2 K-Fold Cross Validation

The code for processing the data set is in appendix A.1. Firstly, we split the

data into a training and testing set. Secondly, we converted this “wide” formated

data, which had a column for each of the grades (G), to a “long” format, where we

created a column of grades, ‘Grade’, along with a column of frequencies of each grade,

‘Freq’. Lastly, uncounting the frequencies for each grade, we extended the data to the

“longest” format. The cross validation will be performed on the “longest” training

set, ‘Grades.training’, and the model will be tested on the “longest” testing set,

2.2. K-Fold Cross Validation 7

‘Grades.testing’. Overall, we are going from a “wide” format, where each section

of a class is represented by a single row, to a “long” format, where each section is

represented by five rows, one for each of the grades. Then, we converted the “long”

format to the “longest” format, where each section is represented by a number of

rows that is equivalent to the number of students in that class. The “longest” format

is useful to fit the models, make predictions, and correctly compute the logLoss using

the built-in R function.

Our goal is to find a method that predicts student grades (G), minimizes the

overall logLoss, and is better than just assuming a uniform distribution to make

random predictions. The main objective of cross validation is to use our training set,

which is separate from the testing set, and create folds within the training set to train

our model and find the optimal model provided certain tuning parameters. A training

set is one in which the model is constructed, and the testing set is used to test the

validity of the model given the optimal tuning parameters. To begin, the test error is

the average error that results from using a statistical or machine learning method to

predict the response on a new observation [8]. This is the error produced from using a

model on the training set. The test error is the logLoss metric defined in chapter 2.1.

Cross validation estimates the testing error by performing the logLoss on the folds

from the training set. However, we require a large enough training set to perform

the methods but equally a large enough testing set to validate. We separated the full

data set into a 2/3-rds portion for the training set, called ‘Grades.training’, and the

remaining 1/3-rd portion for the testing set, called ‘Grades.testing’. This is shown

in the R code in appendix A.1. The splitting was performed on the “wide” data set

in order to keep all the students in a particular section of a class together, and then

the processing from “wide” to “long” to “longest” was performed after sectioning off

a training set and testing set.

Using the training set exclusively, we performed k-fold cross validation. Here, k

2.2. K-Fold Cross Validation 8

refers to the number of partitions or folds that the data is split into [8]. It works by

randomly dividing the data set into 1
k

approximately equally spaced portions. The

k-th fold is used as the validation set that is used to estimate the testing error, and

all but the k-th fold is used as the training set in which the model is fitted on. A

common choice for k, and used in this thesis, is k = 10. In our case, 10% of the data

is used as the validation set, and the remaining 90% is used to fit a model. This is a

good compromise to leave-one-out-cross-validation (LOOCV), where k will be equal

to leaving out one observation with replacement and fitting a model, i.e. k = n, which

is computationally expensive.

Each fold produced is a different iteration, and at each iteration the logLoss values

logLoss1, . . . , logLossk are calculated, which is the testing error for each fold. For

k = 10 folds, the 10-fold cross validation estimate, [8], is the average of the values

logLossi for all i = 1, 2, . . . , 10:

CV(k) =
1

10

10∑
k=1

logLossk,

=
1

10

10∑
k=1

(
− 1

N

N∑
i=1

M∑
j=1

yij,k ln(pij,k)

)
. (2.2.1)

As illustated in figure 2.2.1, we see k = 10 fold cross validation splits the data into

a validation set, k = 1, and uses the remaining k = 9 as the training set. In the first

iteration, the first fold in blue indicates the validation set. In the second iteration,

the second fold in blue is used as the validation set; this is repeated until we use all

the folds as the validation set. This is used to create a logLoss value at each iteration

on each validation set leading to equation (2.2.1).

2.3. Training with the caret Package 9

Figure 2.2.1: Demonstration of k = 10 fold cross validation

To implement cross validation, we require the use of a statistical program R. In

particular, Kuhn et al. [11] created the ‘caret’ package which contains the functions

‘trainControl’ and ‘train’. Using these functions, we can train the models to find the

minimum logLoss values for a certain tuning parameter associated with the model.

2.3 Training with the caret Package

This section accompanies the R code in section A.2. As mentioned before, we

arbitrarily split our data set into a training set by randomly selecting two thirds of

the data set. Then cross validation was preformed on the POLR model, followed by

the VGLM model, the CART model, and then the RF model. The optimal tuning

parameters will be used on the testing set in the subsequent chapters, and the logLoss

of the tested model will be calculated. Cross validation will only be performed on the

statistical study.

2.3. Training with the caret Package 10

2.3.1 Cross Validation for POLR

Using the ‘train’ function from the ‘caret’ package, we can find the minimum

logLoss value for the proportional-odds logistic regression model. Within the ‘train’

function we use method = polr to train the model on the tuning parameters. We can

train the model based on the type of regression model we should use; in other words,

the tuning parameter is distinguishing which model is best between using a logistic

regression model, logistic, or using a normal distribution probit model. Equivalently,

this is determining if we should use a logit link or a probit link, respectively. These

distributions were chosen because of work done by Fox [14] comparing the two distri-

butions. The R output of ‘train.polr’ is given below.

>print(train.polr)

Ordered Logistic or Probit Regression

7703 samples

6 predictor

5 classes: ‘EW’, ‘D’, ‘C’, ‘B’, ‘A’

No pre -processing

Resampling: Cross -Validated (10 fold)

Summary of sample sizes: 6934, 6933, 6933, 6931, 6932, 6931, ...

Resampling results across tuning parameters:

method logLoss

logistic 1.550844

probit 1.550876

logLoss was used to select the optimal model using the smallest

value.

The final value used for the model was method = logistic.

As seen above, logLoss was used to select the optimal model using the smallest

value. In this case, the optimal model is using logistic regression with a logLoss value

of 1.550844. The probit link has a logLoss value that agrees up to about 1.5508 (four

decimal places), but we chose the method that produces the slightly lower logLoss

while also taking into consideration the interpretability of the model. Fox [14] states

2.3. Training with the caret Package 11

that the advantages of using logistic over probit is that it is simpler and easier to

work with, since the CDF is very simple and we do not have to evaluate an integral,

and the logistic inverse transformation is directly interpretable as odds, which will

be defined in the next chaper. To summarize, student grades (G) follow a logistic

distribution where we can use a logit link for the POLR model.

2.3.2 Cross Validation for the Vector Generalized Linear Model

Alternatively, we have the cumulative probability model for ordinal data, or ref-

ered to as the vector generalized linear model. We can train this model to find the

optimal model based on the type of link used, such as logit, probit, cloglog, cauchit,

or logc link. This is almost the same as the POLR model, but we are considering more

possibilities for the link function with the VGLM model. Furthermore, we trained

each of these links based on whether we include the parallelism assumption, which

Yee in [15] states this as determining if the data follows a parallel assumption − if

the data set has proportional odds, i.e. specifying if the estimated coefficients of

the VGLM model have equal/unequal coefficients. Further explanation on the par-

allelism assumption and the tuning parameter parallel can be found in chapter 4.

In R, we use the ‘train’ function with method = vglmCumlative to train the link

and parallel assumption, which is implemented by either setting parallel = TRUE

or parallel = FALSE. The R output of ‘train.vglm’ is given below.

> print(train.vglm)

Cumulative Probability Model for Ordinal Data

7703 samples

6 predictor

5 classes: ‘EW’, ‘D’, ‘C’, ‘B’, ‘A’

No pre -processing

Resampling: Cross -Validated (10 fold)

Summary of sample sizes: 6932, 6933, 6933, 6933, 6934, 6933, ...

Resampling results across tuning parameters:

2.3. Training with the caret Package 12

parallel link logLoss

FALSE logit 1.551378

FALSE probit 1.551429

FALSE cloglog 1.551526

FALSE cauchit 1.551348

FALSE logc 1.551420

TRUE logit 1.550876

TRUE probit 1.550868

TRUE cloglog 1.552892

TRUE cauchit 1.553208

TRUE logc 1.552920

logLoss was used to select the optimal model using the smallest

value.

The final values used for the model were parallel = TRUE ,

and link = probit.

As we can see above, the optimal VGLM model has a logLoss value of 1.550868

with parallel = TRUE with a probit link. Again, the probit and logit links are very

similar in terms of logLoss, so we will use a logit link as it is more interpretable and

is commonly used in data modeling. This is almost exactly the same logLoss value

of the POLR model with the same link and assumption of parallelism. These models

are very similar but the implementation is slightly different: the POLR model uses

maximum likelihood estimates and the VGLM model uses matrices. We can deduce

by cross validation that both the POLR and VGLM model fit a proportional-odds

model. Note that under the parallel assumption, each of the links trained above have

a logLoss value that agree up to about 1.55 (two decimal places), which indicates that

the link chosen is arbitrary. To summarize, we will use a logit link and the parallel

assumption, parallel = TRUE.

2.3.3 Cross Validation for CART

Similarly, using the ‘train’ function we can find the optimal parameters of the

CART method. Firstly, using method = rpart we can find the best complexity

parameter, cp. Secondly, using method = rpart1SE we can find the optimal model

using the one-standard error method [12]. Lastly, we canl find the optimal maxdepth

2.3. Training with the caret Package 13

for the classification tree holding the cp value constant at the value we deduce from

method = rpart. The maximum classification tree depth, maxdepth, is the tuning

parameter that controls the maximum depth of the terminal nodes. An explanation

of each of the tuning parameters and the CART model can be found in chapter 5.

To start, we let the ‘train’ function find the optimal cp value from 100 randomly

selected cp values by setting tuneLength = 100. We have the following results for

‘train.rpart’, leaving out most of the cp values explored.

> print(train.rpart)

CART

7703 samples

6 predictor

5 classes: ‘EW’, ‘D’, ‘C’, ‘B’, ‘A’

No pre -processing

Resampling: Cross -Validated (10 fold)

Summary of sample sizes: 6932, 6933, 6933, 6933, 6934, 6933, ...

Resampling results across tuning parameters:

cp logLoss

1.189925e-03 1.555764

1.232423e-03 1.555437

1.274920e-03 1.555437

1.317417e-03 1.555450

1.359915e-03 1.555340

1.402412e-03 1.554837

1.444909e-03 1.554513

1.487407e-03 1.555046

1.529904e-03 1.555084

1.572402e-03 1.554646

1.614899e-03 1.554571

1.657396e-03 1.554571

1.699894e-03 1.554571

1.742391e-03 1.554777

1.784888e-03 1.555037

1.827386e-03 1.550890

1.869883e-03 1.550890

1.912380e-03 1.551645

1.954878e-03 1.551645

1.997375e-03 1.551645

2.3. Training with the caret Package 14

logLoss was used to select the optimal model using the smallest

value.

The final value used for the model was cp = 0.001869883.

The ‘train’ function deduces that the optimal model used a complexity parameter

value of 0.001869883 with a logLoss of 1.550890.

Hastie et al. [13] states that the one-standard error method is a rule used with

cross validation: which is used we to choose the most parsimonious model whose error

is no more than one standard error above the error of the best model. This can be

applied to finding the optimal cp value, where we find the one-standard error threshold

of the logLoss values. Therefore, using method = rpart1SE we get a logLoss value of

1.558576 with complexity parameter of 0, which tells us that using the one-standard

error method to deduce the cp value is not as accurate as using a cp of 0.001869883.

In chapter 5, we will see that a cp of 0 will allow the classification tree to grow until

there are only a few observations left in each node, which is not helpful in making

predictions.

Now, we can train the CART model to find the maximum tree depth, maxdepth,

controlling for a cp of 0.001869883. Using method = rpart2 in the ‘train’ function, we

can find the optimal classification tree depth. The logLoss value for all tree depths

ranging from two to 30 produced a logLoss of 1.558576. This tells us that tuning

for maxdepth is arbitrary, and since we want an interpretable tree that is not too

big, we will use maxdepth = 5 in R. We will see in chapter 5 that the complexity

parameters greater than zero control the tree depth. This is the reason the logLoss

for the maxdepth does not change for cp = 0.001869883. The R code for maxdepth

training can be found in A.2. To summarize, we will use a cp of 0.001869883 with

maxdepth = 5.

2.3. Training with the caret Package 15

2.3.4 Cross Validation for Random Forests

The last of our machine learning models is the random forest. The tuning pa-

rameters involved are mtry and num.trees. Briefly, the tuning parameter mtry is

the number of input variables to possibly split in each node in the classification tree,

and num.trees is the total number of classification trees grown by the random forest

model. The tuning parameter splitrule is held constant with “gini” to implement the

Gini index splitting criterion 5.0.1 described in chapter 5. Also, the tuning parameter

min.node.size is held constant at one so that the minimum number of observations

that can remain in a terminal node is a single observation. A detailed explanation of

each tuning parameter is included in chapters 5 and 6.

Firstly, using method = ranger in the ‘caret’ package and holding splitrule =

“gini” and min.node.size = 1 constant, we can train for the tuning parameter mtry,

producing the following R output for ‘train.rf’.

> print(train.rf)

Random Forest

7703 samples

6 predictor

5 classes: ‘EW’, ‘D’, ‘C’, ‘B’, ‘A’

No pre -processing

Resampling: Cross -Validated (10 fold)

Summary of sample sizes: 6932, 6933, 6933, 6933, 6934, 6933, ...

Resampling results across tuning parameters:

mtry logLoss

2 1.541947

3 1.543003

4 1.551272

5 1.563008

6 1.575714

Tuning parameter ’splitrule ’ was held constant at a value of gini

Tuning parameter ’min.node.size’ was held constant at a value of 1

logLoss was used to select the optimal model using the smallest

value.

2.3. Training with the caret Package 16

The final values used for the model were mtry = 2,

splitrule = gini , and min.node.size = 1.

As shown above, an optimal random forest model uses mtry = 2 with a minimum

logLoss value of 1.541947. In other words, for each node there will be only two random

input variables available to split the node.

Secondly, holding splitrule = “gini”, min.node.size = 1, and mtry = 2 constant,

we can use the training set to build 100 different random forests, increasing the tuning

parameter num.trees to find the minimum logLoss value. The results are summarised

in figure 2.3.4.1.

Figure 2.3.4.1: Plot to find the optimal total number of trees

The optimal random forests model will use num.trees = 1500, since in figure

2.3.4.1 the logLoss value is minimum around 1500 classification trees. To conclude,

the final tuning parameters are mtry = 2 and num.trees = 1500. Chapter 8 will

include a comparison of results of all the methods considered.

17

Chapter 3

Proportional-Odds Logistic
Regression

One possible data modeling approach for grade prediction is the proportional-odds

logistic regression method (POLR). Models like POLR are designed for our output

variable (G) which is ordered categorical responses [14]. Based on the definition

obtained in [17], we define the POLR model below. Note that training from chapter

2 produced an optimal model using the logit link, which is implemented into the

definition.

Definition. Let Y be an ordinal output variable with M classes, or referred to as

categories. Then, the cumulative probability of Y less than or equal to a specific class

level m = 1, . . . ,M − 1, is given by P (Y ≤ m). Note that P (Y ≤M) = 1. Then, the

odds, or ratio, of being less than or equal to a particular class is given by

P (Y ≤ m)

P (Y > m)
. (3.0.1)

Now, the logit, or log odds, is given by

logit[P (Y ≤ m)] = ln

(
P (Y ≤ m)

P (Y > m)

)
,

= β0,m + β1,mX1 + β2,mX2 + · · ·+ βk,mXk, (3.0.2)

where k is the number of inputs in the data set.

18

We only consider the classes m = 1, . . . ,M − 1 since

P (Y > M) = 1− P (Y ≤M) = 1− 1 = 0,

which will lead to undefined odds in equation (3.0.1). In our case, grades consists of

M = 5 classes with class levels m = 1, . . . , 4, excluding m = 5 because P (Y ≤ 5) = 1.

Hence,

Y =

level 1, if the grade is an EW,

level 2, if the grade is a D or lower,

level 3, if the grade is a C or lower,

level 4, if the grade is a B or lower,

level 5, if the grade is an A or lower.

(3.0.3)

In other words, for grades EW , D, C, B, and A we have Y = 1, 2, 3, 4, and 5, re-

spectively. It makes sense that P (Y ≤ 5) = 1 since this equates to the probability of

getting an A or lower, which will always be one.

The POLR method intuitively has a proportional-odds assumption between each

class in the output. In equation (3.0.2), the proportional odds assumption, or par-

allel regression assumption [17], describes the coefficients, βi,m for i = 1, 2, . . . , k,

of the logit model as being the same at each class level. Or, the odds between each

cumulative probability link is equal. Therefore, equivalently equation (3.0.2) becomes

logit[P (Y ≤ m)] = β0,m + β1X1 + β2X2 + · · ·+ βkXk. (3.0.4)

Using the ‘MASS’ package [19], we can fit the POLR model using the function ‘polr’.

As a generalized notation cannot be reached, R uses the following logit format from

[17]:

logit[P (Y ≤ m)] = β0,m − η1X1 − η2X2 − · · · − ηkXk,

= ζm − η. (3.0.5)

3.1. Implementing POLR in R 19

Here, we see that −ηi = βi for i = 1, 2, . . . , k, where ζm is used to represents the

intercepts, and η is used to represent the estimated coefficients. The η estimated

coefficients can be calculated using maximum likelihood estimates, which are imple-

mented in R. To find the inverse of the logit link function, we begin by setting

logit[P (Y ≤ m)] = loge
(P (Y≤m)
1−P (Y≤m)

)
= ζm − η, then,

ln

(
P (Y ≤ m)

1− P (Y ≤ m)

)
= ζm − η,

P (Y ≤ m)

1− P (Y ≤ m)
= eζm−η,

P (Y ≤ m) =
eζm−η

1 + eζm−η ,

P (Y ≤ m) =
1

1 + e−(ζm−η) .

Finally, we get logit−1[P (Y ≤ m)] = P (Y ≤ m) = 1/(1 + e−(ζm−η)). From the inverse

logit, we can find out the probability of a getting a certain grade or below based on

the levels (7.0.1). Additionally, we can exponentiate both sides of equation (3.0.5) to

get

P (Y ≤ m)

1− P (Y ≤ m)
= exp[ζm − η],

= exp(ζm)exp(−η). (3.0.6)

The ratio (3.0.6) is the called the odds. We observe that the POLR model is an

additive model using (3.0.5) but also a multipicative model for the odds, as seen in

the ratio (3.0.6), [14].

3.1 Implementing POLR in R

Using the ‘MASS’ package [19], we can implement proportional odds logistic

regression where the R code can be found in appendix B. We can now use the

3.1. Implementing POLR in R 20

‘Grades.testing’ portion of the data set, which is the portion the data set meant

for testing and is seperate from the training set to avoid overtraining. This is used

to obtain an accurate comparison of the models later. The following output are the

results from the ‘polr’ function, which I defined in R as ‘Grades.polr’.

> summary(Grades.polr)

Call:

polr(formula=Grade~Semester+Size+StartTime+Day+Class+

YrSince2003 , data=Grades.testing , Hess=TRUE ,

method="logistic")

Coefficients:

Value Std. Error t value

SemesterSpring -0.12325 0.059286 -2.0789

Size 0.01187 0.006776 1.7518

StartTime08 :30 -0.38526 0.347003 -1.1102

StartTime09 :30 -0.22228 0.340185 -0.6534

StartTime10 :30 -0.12748 0.344215 -0.3703

StartTime11 :30 -0.11453 0.342200 -0.3347

StartTime12 :30 -0.12909 0.346552 -0.3725

StartTime13 :30 -0.07864 0.345196 -0.2278

StartTime14 :30 -0.20326 0.303381 -0.6700

Day 0.13213 0.238469 0.5541

ClassMAT250 -0.18119 0.248163 -0.7301

YrSince2003 0.02851 0.006344 4.4951

Intercepts:

Value Std. Error t value

EW|D -0.6259 0.8958 -0.6987

D|C -0.0833 0.8957 -0.0930

C|B 0.8052 0.8958 0.8989

B|A 1.9372 0.8962 2.1616

In the POLR R output, the term ‘EW | D’ corresponds to level 1; the term

‘D | C’ corresponds to level 2; the term ‘C | B’ correspondes to level 3; and the term

‘B | A’ corresponds to level 4 of (7.0.1). Equivalently, the intercepts correspond to

ζm for m = 1, 2, 3, 4. To incorporate the categorical inputs, the POLR model uses

dummy variables. We can see that for the input ‘Semester’ there are 2 levels, “Spring”

and “Fall”, so we see one indictor variable “SemesterSpring”. In other words, in the

final logit link equations the fall semester will be treated as a zero, and the spring

3.1. Implementing POLR in R 21

semester will be treated as a one. Similarily, for the ‘Class’ input variable we identify

‘MAT250’ as a one and ‘MAT135’ as a zero. Lastly, for the input ‘StartTime’ we have

8 levels where the class time 08 : 00 am is indicated with a zero, and the remaining

start times have indicators 1, 2, . . . , 7, leading to 12 inputs including indicators.

The estimated values for the coefficients are given in terms of ordered log odds

[18]. For example, for ‘SemesterSpring’ we would say that for a one-unit increase

in the semester (i.e., going from 0 to 1, or, fall to spring), we expect a 0.12325

decrease in the cumulative probability of the student’s grade on the log odds scale,

given all of the other variables in the model are held constant. Or, if we consider

exp(−0.12325) = 0.88404 with reciprocal 1.13117 (five decimal places), this tells us

that fall students have 1.1318 better odds of having a better grade compared to spring

students.

For convenience, I will set the spring semester as X1; the class size value as X2;

the ‘StartTime’ as X3, X4, . . . , X9 for each of the start times starting at 08 : 30 am

up until 02 : 30 pm; the number of days the class meets as X10; the class being a

calculus I class as X11; and the years since 2003 when the data began as X12. Since

the POLR model assumes the parallel regression assumption, the coefficients are the

same for each logit link at each level (7.0.1). So, the η term is the same for each link

and is given by (3.1.1)

η = −0.12325X1 + 0.01187X2 − 0.38526X3 − 0.22228X4 − 0.12748X5

− 0.11453X6 − 0.12909X7 − 0.07864X8 − 0.20326X9 + 0.13213X10

− 0.18119X11 + 0.02851X12. (3.1.1)

Using the η term, (3.1.1), and the intercepts, we have the POLR equations as follows:

3.1. Implementing POLR in R 22

logit[P (Y ≤ 1)] = −0.6259− η,

logit[P (Y ≤ 2)] = −0.0833− η,

logit[P (Y ≤ 3)] = 0.8052− η,

logit[P (Y ≤ 4)] = 1.9372− η.

Notice that the η term will change sign in the logit equations. Effectively, we are

modeling the probability of getting a certain grade (or lower) as opposed to getting

the grades above it. For example, the probability P (Y ≤ 2) means the probability of

getting a grade of “EW” or “D” versus getting a grade of ”C” or above.

To demonstrate the interpretation of results, we will consider the case when we

have a ‘MAT135’ class in the spring semester in 2003; with a start time of 08 : 30

am that meets 4 days a week; and a class with 44 students. Then, X1 = 1, X2 = 44,

X3 = 1, X4 = X5 = · · · = X9 = 0, X10 = 4, X11 = 0, and X12 = 0. Let’s consider

predicting a grade of D (or lower) as opposed to getting a C or above. Thus, we have

η = 0.45229, logit[P (Y ≤ 2)] = −0.0833− 0.45229 = −0.53559, and

P (Y ≤ 2) = logit−1[−0.53559] = 1/(1 + e−(−0.53559)) = 0.3692141.

In other words, about 36.92% of grades with the outlined terms received a D or worse.

Semester Size StartTime Day Class YrSince2003 Freq Grade

1 Spring 44 08:30 4 MAT135 0 11 A

2 Spring 44 08:30 4 MAT135 0 11 B

3 Spring 44 08:30 4 MAT135 0 8 C

4 Spring 44 08:30 4 MAT135 0 2 D

5 Spring 44 08:30 4 MAT135 0 12 EW

Above are the five observations of the actual data set under our input variables

defined for the interpretation example. Hence, the actual grades with these inputs

were A = 11, B = 11, C = 8, D = 2, and EW = 12. The probability of receiving a D

3.2. Prediction and logLoss for POLR 23

or lower equates to (2 + 12)/(11 + 11 + 8 + 2 + 12) = 0.3182, or 31.82%. The POLR

model predicts the students’ grade cumulative probability relatively well in this case.

Note that this may not necessarily be the case for a different set of inputs. Similarly,

we can calculate P (Y ≤ 1) = 0.2538487; therefore, the predicted probability of

getting exactly a D is P (Y = 2) = P (Y ≤ 2)−P (Y ≤ 1) = 0.3692141− 0.2538487 =

0.1153654, or about 11.54%.

3.2 Prediction and logLoss for POLR

To assess the accuracy of our POLR results, we use the logLoss equation (2.1.1).

Conveniently, we can use the ‘mlogLoss’ function in the ‘ModelMetrics’ package [20]

to find the final logLoss value for the model. The R code to implement this is

found in appendix B. Creating predicted probabilities for each student grade from

‘Grades.testing’, we have the following predicted probability results using the inputs

from the example in the previous section.

> predict.polr[1,]

EW D C B A

0.2371759 0.1113345 0.2168307 0.2360309 0.1986280

Notice that the probability of getting a D in the first row is 11.13%, which is what

we computed in the previous section with some rounding errors. Finally, using the

‘mlogLoss’ function we get a logLoss value of 1.541234.

To demonstrate the calculation, if the actual grades from the testing set was an

A, then the logLoss value is given by −ln(0.1986280) = 1.616322. The logLoss value

of 1.541234 is the average of all cases in the data set.

24

Chapter 4

Vector Generalized Linear Model

Yee [21] states that classical regression models for categorical response, such as

POLR and multinomial logit, can be readily handled by the vector generalized linear

model (VGLM), an alternative that is similar to the POLR model. This approach

is well-suited for data with an ordinal response variable such as a student’s grade.

There are several extensions and versions of VGLM, but for the purposes of this

study, we will focus on the VGLMs exclusively. The ‘polr’ function is useful for

fitting a proportional model; however, the VGAM package [15] offers alternatives to

the proportionality with the ‘vglm’ function. From the training in chapter 2, we

see that the optimal VGLM model still assumes proportional-odds; nevertheless, an

outline of VGLM is below based on the definition given in [22].

Definition. Suppose we have output Y with M levels, as shown in (7.0.1), and

suppose we have k input variables including indicators. Let the inputs X be given

by (X1, X2, . . . , Xk)
T , and let B be given by (β1|β2| . . . |βM−1) − a k-by-(M − 1)

matrix of unknown coefficients. Then, VGLMs are defined as a model for which the

conditional distribution of output Y given intputs X is of the form

f(Y |X; B, φ) = h(Y, η1, η2, . . . , ηM−1, φ), (4.0.1)

for some known function h(·), where ηm are the linear predictions and φ is an optional

scaling parameter, which is ignored in this study. The m-th linear predictor is given

by

25

ηm = βm
TX = αm +

k∑
i=1

βi(m)Xi, m = 1, 2, . . . ,M − 1. (4.0.2)

Finally, the logit link, similar to chapter 2, is given by

logit[P (Y ≤ m)] = ηm. (4.0.3)

Yee [21] states that equation (4.0.2) shows that all the parameters may be poten-

tially modelled as functions of X. VGLMs are like GLMs but allow for multiple linear

predictors, which is helpful to predict our five-level ordinal output Y . The coefficients

in βm can be approximated using maximum likelihood estimation.

For our case, we have k = 12 predictors as we see in the POLR output from

chapter 2. These 12 inputs include the indicators from the dummy variables. Also,

from equation (7.0.1) we see that there are M = 5 levels with m = 1, 2, 3, 4. We

can write the inputs for our data as X = (X1, X2, . . . , X12)
T , and we can write the

coefficient matrix B = (β1|β2|β3|β4)12×4, or

B =

β1(1) β1(2) β1(3) β1(4)

β2(1) β2(2) β2(3) β2(4)
...

...
. . .

...

β12(1) β12(2) β12(3) β12(4)

.

In chapter 2, we saw that one of the parameters under training was the parallel

assumption. In R, this is implemented using the ‘cumulative’ function in the ‘VGAM’

package with either parallel = TRUE or parallel = FALSE. Cross validation

indicated that the optimal VGLM model assumes proportional-odds. This means

that the coefficients for each logit[P (Y ≤ m)] link in (4.0.3) are the same, whereas

the intercepts will differ. Hence, in the matrix B we will have βi(m) = βi for all

m = 1, 2, 3, 4 and i = 1, 2, . . . , 12, or, βm
T = (β1, β2, . . . , β12). Note that if parallel =

FALSE then for each link we would have a different equation for ηm, which the ‘polr’

function could not implement. Equation 4.0.3 becomes

4.1. Implementing VGLM in R 26

logit[P (Y ≤ m)] = ηm = βm
TX = αm + β1X1 + β2X2 + · · ·+ β12X12. (4.0.4)

4.1 Implementing VGLM in R

Using the ‘VGAM’ package [15], we can implement the vector generalized linear

model using the R code in appendix C. Again, we use the ‘Grades.testing’ portion in

this section, and we will use the ‘vglm’ function to apply the vector generalized linear

model, which I defined in R as ‘Grades.vglm’.

> summary(Grades.vglm)

Call:

vglm(formula=Grade~Semester+Size+StartTime+Day+Class+

YrSince2003 , family=VGAM:: cumulative(link="logit",

parallel=TRUE), data=Grades.testing)

Coefficients:

Estimate Std. Error z value

(Intercept):1 -0.625973 0.901879 -0.694

(Intercept):2 -0.083342 0.901724 -0.092

(Intercept):3 0.805120 0.901790 0.893

(Intercept):4 1.937142 0.902221 2.147

SemesterSpring 0.123250 0.059293 2.079

Size -0.011870 0.006720 -1.766

StartTime08 :30 0.385285 0.350419 1.099

StartTime09 :30 0.222301 0.343638 0.647

StartTime10 :30 0.127507 0.347556 0.367

StartTime11 :30 0.114558 0.345592 0.331

StartTime12 :30 0.129123 0.350075 0.369

StartTime13 :30 0.078666 0.348877 0.225

StartTime14 :30 0.203294 0.306014 0.664

Day -0.132130 0.241028 -0.548

ClassMAT250 0.181196 0.249830 0.725

YrSince2003 -0.028515 0.006317 -4.514

Names of linear predictors: logitlink(P[Y<=1]) , logitlink(P[Y<=2]) ,

logitlink(P[Y<=3]) , logitlink(P[Y<=4])

4.1. Implementing VGLM in R 27

From the VGLM R output, the linear predictors are

η = (logit[P (Y ≤ 1)], logit[P (Y ≤ 2)], logit[P (Y ≤ 3)], logit[P (Y ≤ 4)])T ,

and the input variables are given by X = (X1, X2, . . . , X12)
T , by setting the input

variables as Xi in a convenient format like we did in chapter 2. Furthermore, we see

that there is only one set of coefficients βi due to the parallel assumption; otherwise,

we would see a similar syntax like for the ‘(Intercept)’ term, in which we would see

12×4 = 56 predictors, leading to a different set of coefficients for each linear predictor

ηm.

The intercepts for each of the linear predictors are α1 = −0.625973, α2 = −0.083342,

α3 = 0.805120, and α4 = 1.937142. Lastly, for each column βm in B we have

βm =

0.123250

−0.011870

0.385285

...

−0.028515

, ∀m = 1, 2, 3, 4.

Considering η2, we have logit[P (Y ≤ 2)] = −0.083342+β2
TX. The interpretation

is very similiar to the POLR model: if we wish to calculate the proportion of student

grades that are a D or lower in a introductory statistics class, ‘MAT135’; in the

spring semester in 2003; with a start time of 08 : 30 am that meets 4 days a week;

and the class that has 44 students; then X = (1, 44, 1, 0, 0, 0, 0, 0, 0, 4, 0, 0). Yielding,

the linear predictor logit[P (Y ≤ 2)] = −0.083342− 0.542265 = −0.625607, and

P (Y ≤ 2) = logit−1[−0.625607] = 1/(1 + e−(−0.625607)) = 0.3485073.

Therefore, the probability of getting a D or EW versus a C or above is 34.85%. In

chapter 2, we saw that the actual probability of getting a D or lower is 31.82%,

4.2. Prediction and logLoss for VGLM 28

so the VGLM model predicts the probability relatively well under these conditions.

Similarily, P (Y ≤ 1) = 0.2371736 leading to a probability of getting exactly a D

under the specified inputs is P (Y = 2) = 0.3485073 − 0.2371736 = 0.1113337, or

11.13%.

This is exactly the same as the POLR model, and note that the estimated coeffi-

cients are the same as the POLR model with opposite sign. Therefore, we expect the

logLoss value of the testing set to be the same as the POLR model.

4.2 Prediction and logLoss for VGLM

To assess the accuracy of the VGLM model, we use the logLoss equation (2.1.1).

Again, we can use the ‘mlogLoss’ function in the ‘ModelMetrics’ package [20] to

find the final logLoss value for the model. The R code to implement this is found

in appendix C. Creating predicted probabilities for each student grade for the same

input values as in our example, we have the same probabilities as in the POLR model.

> predict.vglm[1,]

EW D C B A

0.2371759 0.1113345 0.2168307 0.2360309 0.1986280

Notice that the probability of getting a D in the first row is 11.13%, as was

computed in the previous section. We get a logLoss value of 1.541234 using the

‘mlogLoss’ function; note that this is identical to the POLR model fit in the previous

chapter.

The logLoss value using parallel = FALSE was 1.537636. This is close to the

value 1.541234. Since there are less terms to consider and less estimated coefficients

under the parallel assumption, we are inclined to use parallel = TRUE as it is more

interpretable.

29

Chapter 5

Classification and Regression Tree
Model

The CART model is an abbreviation for the classification and regression tree model

and is commonly referred to as recursive partitioning. This method was introduced

by Leo Breiman et al. in 1984 [9], where Breiman exposes the data modeling culture

as being a limited method compared to the algorithmic modeling culture. This is a

strong statement which we will explore in this thesis. However, both cultures come

with positives and negatives. Both cultures are concerned with the black box, which

associates the input variables to the output variable. Typically, statisticians from

the dominant data modeling culture do not think of data models, such as linear

regression or logistic regression, as a black box since they know quite a bit about

the assumptions and the mathematical properties of these models. In contrast, the

algorithmic modeling culture deals with thinking outside the black box and finds

patterns within the data using an algorithm. Since both cultures are concerned with

predictive accuracy, Breiman is able to make relevant comparisons between the two

cultures. Breiman discusses limitations to data modeling leading to worse accuracy,

and provides a solution by introducing algorithmic modeling, particularly the CART

model and later on the random forests model. However, questions of interpretability

are just as important as accuracy when solving a problem or presenting solutions to

a non-technical audience. Description of the CART model is primarily taken from

30

James et al.[8].

Breiman [1] evaluates the interpretability of the CART model as an ‘A+’; however,

in most cases the CART model scores a ‘B’ on prediction. Thus, a positive in the

CART model is that it is highly interpretable, but a negative is that the prediction

may not be any better than the models from the data modeling culture, such as those

discussed in chapter 3 and 4. The aim of this chapter is to evaluate whether the CART

model is suitable for our ordinal output and if it worth implementing compared to

the POLR and VGLM models.

The CART model can be implemented on a regression problem, where the input Y

is quantitative, or the CART model can be implemented on a classification problem,

where the input Y is categorical. In our case the data is ordinal, so for the purposes

of this study I will overview classification trees for the CART model.

James et al. [8] describes the CART model as segmenting the predictor space

into J simple regions, denoted R1, R2, . . . , RJ and referred to as terminal nodes. The

splitting rules, which we will define later, can be summarised in a tree, or commonly

known as decision trees. For each region in a classification tree, the predicted response

for an observation will be given by the most commonly occuring class, or in our

case the most common grade in terms of percentage in each region. In fact, the

classification tree will include the probability of each grade for that region. However,

how do we determine these J regions? Typically, we use high-dimensional rectangles

or boxes [8]. We find the regions R1, R2, . . . , RJ that minimize a classification error

measure that is sensitive to the tree growth. Two available splitting criterion are the

Gini index, G, and entropy, E.

Firstly, the Gini index is defined as

G =
M∑
m=1

p̂jm(1− p̂jm), (5.0.1)

where 0 ≤ p̂jm ≤ 1 represents the probability or proportion of a particular class

31

m = 1, 2, . . . ,M for observations in the j-th region. For small values of G, with p̂jm

close to zero or one, we define the region j as pure− the region contains predominantly

one class m.

Secondly, entropy (or Shannon’s Diversity) is defined as

E = −
M∑
m=1

p̂jm log(p̂jm), (5.0.2)

where 0 ≤ p̂jm log(p̂jm). Here, a p̂jm close to zero or one gives an entropy close to

zero − the jth node will be thought of as pure as well. In fact, the Gini index and

entropy are similar numerically [8].

It is computationally expensive to consider every possible segmentation of the

predictor space; therefore we require a method called recursive binary partitioning.

The ‘binary’ in recursive binary partioning refers to a left and right split from an

initial node − a node that contains all the observations in the data set. For our

analysis, the initial node will include all observations from the testing set.

Each split creates a branch that goes further down the tree until we reach a

terminal node Rj, for some j. For example, consider an input Xj and a cutpoint t that

splits the predictor space into a branch {X|Xj < t} and into a branch {X|Xj ≥ t},

where t leads to the greatest possible reduction in G or E [8]. For each of the branches

from the initial node to all subsequent nodes, we repeat the process considering all

inputs X1, X2, . . . , Xk, and all possible cutpoints t for each of the inputs, choosing

the input and cutpoint combination that gives the lowest classification error, either

G or E.

From the initial node we produce two nodes, then for each of these two nodes we

find the best input and cutpoint that lowers the classification error G or E. This splits

one of these subsequent nodes leading to three nodes in the tree, and we repeat binary

splitting on one of these three nodes. This could be repeated to obtain an infinite tree

depth. Typically, the stopping criterion for tree growth is when the terminal nodes

32

have no more that five observations in each region, or for classification it is typically

to stop when we only have one class left in the terminal node. The results using the

testing set will be used as the demonstration.

To avoid overtraining and building a overly complex tree, we can build the full

tree, T0, and prune this tree, or cut back the tree to obtain a subtree. Complexity

pruning is a method which uses a complexity parameter, cp, in which a sequence of

trees are considered using this cp value, then a subtree with the lowest test error is

used. In [8], the complexity parameter is refered to as α. Below is an outline of cross

validation for chosing the cp and and building the tree on the testing set.

Algorithm 5.1 Training, Testing, and Fitting a Classification Tree

Training Set (using logLoss):

1. Apply K- fold cross validation to a sequence of cp values and select the cp value

with the lowest logLoss.

Testing Set and Building the Tree (using the Gini index or Entropy):

2. Implement recursive binary partitioning to grow a full tree T0, terminating when

a node has one class left.

3. Apply the cp value from the training set to obtain the corresponding subtree T

and the number of terminal nodes |T |. This is based on

G+ cp |T | or E + cp |T |.

4. Return the subtree, T ⊂ T0, from step 3 that corresponds to the cp value.

Note that the number of terminal nodes |T | is given by |T | = nsplit + 1, where

‘nsplit’ is the number of splits there are in the tree. Also, a cp value of zero will lead

to a very large overfitted tree as we will not have a penalizing ‘cp |T |’ term in the

5.1. Implementing CART in R 33

algorithm, leading to the full tree T0. In chapter 2, a control parameter maxdepth was

considered, which controls the depth of the tree. Since the cp values can be thought

of as a penalizing term for letting the tree grow, it makes sense that the training

set showed that the choice of tree depth is unimportant since the cp value already

controls for tree depth.

5.1 Implementing CART in R

Using the ‘rpart’ package [12], we can implement the CART model for our classifi-

cation problem. Again, we use the designated ‘Grades.testing’ portion and the tuning

parameters deduced from chapter 2 to build a classification tree. The R code imple-

menting the CART model using the ‘rpart’ function can be be found in appendix D.

The optimal cp value used is 0.001869883, with the default maxdepth of 30 since it

was deemed arbitrary. Using the Gini index and finding the resulting subtree given

a cp of 0.001869883 can be calculated using R with the following results.

> Grades.cart$cptable

CP nsplit rel error xerror xstd

1 0.008594019 0 1.0000000 1.0000000 0.009727934

2 0.006073106 1 0.9914060 1.0044689 0.009692125

3 0.005156411 4 0.9731867 1.0010313 0.009719727

4 0.003093847 5 0.9680303 0.9948436 0.009768455

5 0.002406325 6 0.9649364 0.9948436 0.009768455

6 0.001869883 9 0.9577174 0.9948436 0.009768455

We see that the final cp value in the table above is the cp from training the

CART model. The ‘rpart’ object ‘cptable’ prints a matrix of information on the

optimal prunings based on a complexity parameter [12]. This is step 3 and 4 from

algorithm 5.1. Therefore, the optimal tree has a cp of 0.001869883 with 9 splits and

|T | = 9 + 1 = 10 terminal nodes, namely R1, R2, . . . , R10. The resulting classification

tree is given in figure 5.1.1. Note that the resulting classification tree only considers

the inputs ‘YrSince2003’, ‘Size’, ‘StartTime’, and ‘Semester’, whereas all the other

inputs did not increase the node purity from the Gini index. Also, it appears that

5.1. Implementing CART in R 34

the probability of receiving a D in each node is never the highest probability.

Figure 5.1.1: CART model for cp=0.001869883 and maxdepth = 5

Each of the colored nodes in figure 5.1.1 contain three pieces of information work-

ing from the top of the node to the bottom: the most likely student grade; the

probabilities of each grade; and the percentage of the data set that this observation

represents, respectively. Denote the terminal nodes R1, R2, . . . , R10 moving from the

bottom left to the bottom right of figure 5.1.1. In the middle of the node, the proba-

5.1. Implementing CART in R 35

bilities of each grade starts with the probability of EW on the left and ends with the

probability of A on the right.

Looking at the initial the initial node, the recursive binary splitting to the left,

indicating a ‘yes’, is {X |Y earSince2003 < 13}, and the recursive binary splitting to

the right, indicating a ‘no’, is {X |Y rSince2003 ≥ 14}.

Looking at the terminal node R9, we observe that this node predicts a B, with a

probability of 46%, which contains 2% of the ‘Grades.testing’ testing set. To reach

the terminal node R9, we have to have the years since 2003 be less than 13, the class

size greater than or equal to 45, and the years since 2003 be, more specifically, greater

than or equal to 12. This can be summarized as a class with 45 students or more, and

there are exactly 12 years since 2003, i.e. the year is 2015. Equivalently, the terminal

R9 can be summarized as

R9 = {X |Y earSince2003 = 12, & Size ≥ 45}.

Consider the same conditions as for POLR and VGLM: a class ‘MAT135’ class in

the spring of 2003; with a start time of 08 : 30 am; that meets 4 days a week; and

that contains 44 students. Since the classification tree above only uses four inputs we

can summarize this as a class with 44 students; a start time of 08 : 30 am; the years

since 2003 as zero; and the class in the spring. If we following these rules down the

classification tree, we will reach the terminal node R7 which predicts that a student

under these conditions will most likely get the grade B with a 30% probability. Also,

the probability of getting an A is 19%, the probability of getting a C is 18%, the

probability of getting a D is 10%, and the probability of getting an EW is 24%. This

CART model is visually more interesting and easier to interpret, as we do not need

to deal with interpreting logit links and cumulative probabilities.

5.2. Prediction and logLoss for CART 36

5.2 Prediction and logLoss for CART

Just as before, we can use the ‘mlogloss’ function to generate the logLoss value

of the CART models with a cp of 0.001869883 and a maxdepth of 5. The R code

that implements this is found in appendix D. Creating predicted probabilities for each

student grade for the same input values as our example, we have the results below.

> predict.cart[1,]

EW D C B A

0.23880597 0.09701493 0.17910448 0.29850746 0.18656716

Notice that terminal node R7 predicted the grade B with a 30% probability. Also, all

the other probabilities are the same as in our example. Finally, we get a logLoss of

1.52279 for cp of 0.001869883 and maxdepth = 5. We see an improvement compared

to the data models, as the POLR and VGLM models had a logLoss of 1.541234.

37

Chapter 6

Random Forests Tree Model

A problem associated with classification trees is that they have high variance [8].

In other words, a small change in the data set leads to a large change in the classi-

fication tree with different results. Also, the CART model can be defined as a weak

learner: where introducing too many predictors to the model will cause inaccuracy,

as if the algorithm gets overwhelmed. We will see that the RF model is a technique

of combining a large number of weak learners to make a strong learner. The following

overview of the random forests model is taken from [8] and [13].

The bootstrap method is used to fix the high variance in the CART model. Ba-

sically, bootstrapping averages a set of observations to reduce the variance. So, to

reduce variance and increase accuracy one can take several training sets, build a model

for each of the training sets, and then average the resulting predictions. Since we do

not have access to several training sets, a technique called bagging, or bootstrapped

aggregation, can be used.

For bagging, we take our data set, in our case the testing set, and select B, a

number of random (bootstrap) samples with replacement, where each bootstrap will

be the same size as the original data set. In fact, the number B is the total number

of classification trees grown by the random forests model. For the b-th bootstrap we

apply the model, obtain the prediction, and average the prediction results. For the

RF model, we calculate the classification predictions Ĉ1(X
′), Ĉ2(X

′), . . . , ĈB(X ′) on

the B bootstraps, where X ′ are the inputs we wish to make a prediction. Each of

38

the classification trees are grown without complexity pruning. This can be done by

setting cp = 0 for the CART model, allowing each tree to have high variance and low

bias.

Averaging reduces the variability of the low biased classification trees. The aver-

aging part of bagging for a classification problem is done by taking a majority vote

from each of the predictions Ĉb(X) for some bootstrap b. Majority voting is the over-

all prediction of the most commonly occuring class in the B bootstraps [8]. Bagging

is a simplified method to bootstrapping as we take some number n < N , where N is

the number of observations in the data set. A problem that arises with randomized

samping is we may get a set of bootstraps that are similar, creating highly correlated

trees. If we average correlated classification trees, we do not improve the variance

issue. This problem is fixed in the RF model.

Random forests uses bagging and decorrelates the classification trees [8]. Instead

of building a classification tree with k inputs under consideration for each node,

a subset of predictors, namely mtry, are considered at each node. This avoids a

computationally expensive model when building a large number ofB trees. A common

choice is mtry ≈
√
k. From chapter 2, cross validation determined that the number

of input variables to consider at the splitting of each node is two, i.e. mtry = 2. The

splitting rule used in the RF model is the Gini index, G from 5.0.1.

The RF model takes into account the strength of each of the inputs. From the

CART model, the stronger inputs were ‘StartTime’, ‘Size’, ‘Semester’, and ‘YrSince2003’.

For each of the classification trees, the bootstrap sample takes into account the

stronger inputs and these are used in the initial node split more frequently. These

stronger inputs are the inputs that maximize node purity in the Gini index.

To summarise, the RF model builds B number classification trees, decorrelates the

classification trees by only selection mtry inputs to split at each node, and implements

a majority vote to find the probabilities. Algorithm 6.1 outlines how to build RFs

39

and is based on the work done in [13]. For algorithm 6.1, X are the inputs in the

testing set.

Algorithm 6.1 Training, Testing, and Fitting the Random Forests model

Training Set (using logLoss):

1. Apply K- fold cross validation to find the number of inputs to split at each

node and the number of bootstraps B = num.trees.

Testing Set and Building the Tree (using the Gini index and logLoss):

2. Obtain B bootstraps from the testing set.

For b = 1, 2, . . . , B:

3. Obtain the corresponding classification tree Tb for each bootstrap b using the

CART algorithm 5.1 with cp = 0.

(a) Select a mtry random number of inputs from X.

(b) Select which of the random inputs increase node purity using the Gini

index.

(c) Binary split the node using one of the inputs, and stop when there remains

only one class left in the node, i.e. min.node.size = 1.

4. Return all the classification trees for each bootsrap b: {Tb}B1 .

Let X ′ be vector of input values that you want to use to make a prediction:

5. Obtain the classification prediction Ĉb(X
′) for each of the b-th random forest

classification tree. Then,

ĈB
rf (X

′) = majority vote Ĉb(X
′).

6.1. Implementing Random Forests in R 40

Here, ‘forest’ refers to the fact that we are growing a large number of classifications

trees. A downside to RF is we do not have any equations, such as POLR and VGLM,

to use to make predictions on paper. We require a statistical program to make

predictions using the RF model. Therefore, bagging improves the prediction accuracy

at the expense of interpretability [8]. Note that after a probability distribution is

created using ĈB
rf (X ′) in step 5, we can test the random forest model against the

actual grades obtained from the ‘datatest’ set, use the logLoss equation 2.1.1, and

find the final logLoss value of the model.

6.1 Implementing Random Forests in R

First, the RF model is built with R, then that model is used to make predic-

tions. The RF model was built using the Gini index splitting rule, implemented by

splitrule = “gini”; only allowing the classification trees Tb to terminate growth when

there is only one class left in a node, implemented by min.node.size = 1; only allow-

ing two random predictors to be considered in splitting each node, implemented by

mtry = 2; and finally, setting the number of classification trees the RF model will

grow as B = num.trees = 1500. It is not feasible to plot all of the 1500 trees, so the

R program stores the model instead. To grow the random forest, we used the ‘ranger’

function in the ‘ranger’ package [23]. The output from the ‘ranger’ function, where

the RF is stored in ‘Grades.rf’, is given below.

> print(Grades.rf)

Ranger result

Call:

ranger(Grade~Semester+Size+StartTime+Day+Class

+YrSince2003 , data=Grades.testing , mtry = 2,

splitrule="gini", importance="impurity",

min.node.size=1, num.trees =1500 ,

probability = TRUE , classification = TRUE)

6.2. Prediction and logLoss for Random Forests 41

Type: Probability estimation

Number of trees: 1500

Sample size: 4014

Number of independent variables: 6

Mtry: 2

Target node size: 1

Variable importance mode: impurity

Splitrule: gini

The importance = impurity syntax in the ‘ranger’ function allows the RF to print

out the variable importance. Since the RF model uses the strongest predictors in the

top splits, a calculation of the importance of each input variable is given below.

> Grades.rf$variable.importance

Semester 12.098243

Size 52.624820

StartTime 33.277749

Day 5.829171

Class 4.063113

YrSince2003 53.669897

Just as we saw in the CART model, with ‘YrSince’ as the most important variable,

the RF model uses ‘YrSince2003’, ‘Size’, ‘StartTime’, and ‘Semester’ as the strongest

inputs, indicated by a larger number.

6.2 Prediction and logLoss for Random Forests

Lastly, to assess the accuracy of the RF method, we use the logLoss equation

2.1.1. Using the ‘predict’ function in the ‘stats’ package, we can find the probability

distribution of the grades G.

> predict.rf$predictions [1,]

EW D C B A

0.24693478 0.08180274 0.18950940 0.25930729 0.22244579

Finally, applying the ‘mlogloss’ function we return the final logLoss value of 1.460193.

This is the lowest logLoss out of all the statistical models. We will discuss the

preformance and merits of the various models in chapter 8.

42

Chapter 7

Trigonometric Functions and
Fourier Series

For the numerical study, we will consider interpolatory trigonometric polynomials

and Fast Fourier Transforms which will be a different approach than the statistical

study. This approximation technique has been utilized in areas such as quantum

mechanics and optics. The trigonometric interpolating polynomials will be used to

evaluate certain scenarios within the data set. For instance, trigonometric interpolat-

ing polynomials will be constructed to model the proportion of students’ grade (G)

with respect to the start times in all spring ‘MAT135’ classes. Trigonometic interpo-

lating polynomials fit large amounts of equally spaced data very well, and we used this

to test the model on the non-traditional class start times: 02:30 pm and 08:00 am.

We also investigated how the cyclic performance has been occuring over the years,

that is, how much the proportion of students getting different grades repeat. After

visual examination of the data plots, time periods that appear to model a complete

cycle were selected. In the above treatments, the two inputs were chosen as they were

significant factors in the statistical study. The theory of trigonometric polynomial

interpolation is discussed in many numerical methods texts, for example [24].

Definition. The interpolatory trigonometric polynomial, Sn(x), on a set of m data

points {(xj, yj)}m−1
j=0 with the assumption that xj = 2πj

m
is given by

43

Sn(x) =

a0
2

+
∑n

k=1(ak cos(kx) + bk sin(kx)), if m = 2n+1,

a0
2

+
∑n−1

k=1(ak cos(kx) + bk sin(kx)) + an cos(nx)
2

, if m = 2n,
(7.0.1)

where

ak =
1

m

m−1∑
j=0

yj cos(kxj), and (7.0.2)

bk =
1

m

m−1∑
j=0

yj sin(kxj). (7.0.3)

The interpolation of m data points requires approximately O(m2) multiplications

and m2 additions by direct computations. Since data generally consists of thousands

of data points, the computation time is prohibitive in addition to round-off errors

dominating the approximation. We use the Fast Fourier Transform (FFT) method

which requires only O(mlog2(m)) multiplications and O(mlog2(m)) additions. The

complex version of the trigonometric interpolating polynomial is

Sn(x) =
n∑

k=−n

zk e
ikx, with zk ≡ zm−k, (7.0.4)

where the vector z is the Discrete Fourier Transform (DFT) of the data vector y with

zk = 1
m

∑m−1
j=1 yje

−i2πjk/n. Thus the coefficients are given by

aj = 2Re(zj) =
2

m

m−1∑
k=0

yk cos(jxk), (7.0.5)

bj = −2Im(zj) =
2

m

m−1∑
k=0

yk sin(jxk). (7.0.6)

We start by investigating how the grade proportions vary with respect to start

times. The models were constructed using the traditional start times; then, we deter-

mined if the non-traditional start times followed the cyclic behavior of the preceeding

start times. Also, we evaluated whether this is a beneficial time to teach the specified

class. The second investigation looks at how the grade proportions vary with respect

7.1. Implementing Trigonometric Functions in
MATLAB for the Start Times 44

to time since 2003. We assumed a complete cycle pattern between 2007 and 2013.

We then extended this periodic trigonometric function in time and observed how well

it models the rest of the data. The experiment was repeated for data from 2005 to

2011 and the two models were compared. To compare the two models, the error was

calculated using the L2 norm (7.0.7) [24],

||x||2 =

√√√√ m∑
i=1

x2i . (7.0.7)

The numerical simulations were carried out using MATLAB, which can be seen in

appendix F.

7.1 Implementing Trigonometric Functions in

MATLAB for the Start Times

Let us consider the ‘MAT135’ class in the fall. The trigonometric interpolating

polynomial was computed using the traditional start times: 09:30 am, 10:30am, 11:30

am, 12:30 pm, and 1:30 pm. For each student’s grade (G) we find the corresponding

trigonometric interpolating polynomial based on the the traditional start times. We

call these start times “traditional” because only recently did Murray State University

offer the course outside of these times. The non-traditional start time is 02:30 pm,

since a class at this time is uncommon for this particular class. We used this non-

traditional start time to check the accuracy of our model. Similarily, for spring

‘MAT135’ and fall ‘MAT250’, we considered the non-traditional start time of 08:00

am. Spring ‘MAT250’ did not contain any non-traditional start times. Based on

the accuracy of the models from the data with non-traditional start times, we may

determine whether it is worth introducing a ‘MAT250’ class earlier or later during

the day.

To demonstrate the trigonometric polynomials for figure 7.1.1, we used the A

grade proportions.

7.1. Implementing Trigonometric Functions in
MATLAB for the Start Times 45

‘StartTime’ 09:30 10:30 11:30 12:30 13:30 14:30

Hours after 09:30 am 0 1 2 3 4 5

x 0 2π
5

4π
5

6π
5

8π
5

2π

Grade A actual proportions 0.3309 0.2984 0.2763 0.2556 0.3096 0.3171

Since the model was constructed using the first five start times, we have m = 5 and

n =
⌊
m
2

⌋
=
⌊
5
2

⌋
= 2. We found the trigonometric interpolating polynomial for the

proportion of A grades as

S2(x) = 0.2941 + 0.0356 cos(x) + 0.0012 cos(2x) + 0.0007 sin(x)− 0.0107 sin(2x).

Therefore, the predicted proportion of A grades at 02:30 pm is S2(2π) = 0.3309. Note

that this is the same value as S2(0) since the trigonometric interpolating polynomials

have period 2π. In other words, at 02:30 pm we have the same predicted proportion

of A grades as the actual proportion of A grades at 09:30 am.

7.1. Implementing Trigonometric Functions in
MATLAB for the Start Times 46

Figure 7.1.1: Proportion of student grades in ‘MAT135’ against the start times in the
fall

Figure 7.1.1 includes the trigonometric interpolating polynomial for each students’

grade computed using the traditional start times. Here, the zero on the x-axis repre-

sents the start time 09:30 am. The markers at time five represent the true proportion

of the grades at 02:30 pm. At 2:30 pm, the model is predicting about 0.01 points

higher in the proportion of A grades; about 0.01 points lower for the actual proportion

of B grades; about 0.005 points lower for the actual proportion of C grades; about

0.005 points higher for the actual proportion of EW grades; and about 0.01 points

higher for the actual proportion of D grades. The models for the proportion of A,

B, C, and EW grades follow the trend of an increase or decrease in actual propor-

tion; however, the model for the D grades predicts an increase when they actually

decreased. Overall, the models accurately predict the trend in the proportions. Also,

7.1. Implementing Trigonometric Functions in
MATLAB for the Start Times 47

it would not be beneficial to offer a ‘MAT135’ class at 02:30 pm in the fall as the

proportion of D and EW grades increase.

Figure 7.1.2: Proportion of student grades in ‘MAT135’ against the start times in the
spring

Figure 7.1.2 modeled the proportion of grades in the spring ‘MAT135’ class. In

this case, the non-traditional start time is 08:00 am. The model closely predicts the

C and D grades; however, the model predicts about 0.04 points lower than the actual

proportion of A grades and about 0.05 points higher than the actual proportion of B

and EW grades. Overall, the models follow the trend in the actual proportion. The

model predicts a decrease in the proportion of D and EW proportion rates, so it is

worth introducing a ‘MAT135’ class at 08:00 am in the spring.

7.1. Implementing Trigonometric Functions in
MATLAB for the Start Times 48

Figure 7.1.3: Proportion of student grades in ‘MAT250’ against the start times in the
fall

Figure 7.1.1 modeled the proportion of grades in the fall ‘MAT250’ class. In this

case, the non-traditional start time is 08:00 am. The model does not follow a trend for

the A and EW grades. For the B, C, and D grades, the model severly underestimates

or overestimates the grades. Since there is a high predicted proportion of A grades

and a decrease in EW grades at 08:00 am, it would be beneficial to hold a ‘MAT250’

class at 08:00 am in the fall, according to the model.

7.2. Implementing Trigonometric Functions in
MATLAB for the Years Since 2003 49

Figure 7.1.4: Proportion of student grades in‘MAT250’ against the start times in the
spring

Figure 7.1.4 shows that students in a ‘MAT250’ spring class have a high proportion

of EW grades with the proportion of A grades decreasing significantly after 11:30 am.

These would be the worst times to attend a spring ‘MAT250’ class. The best times

to attend a spring ‘MAT250’ class is at 09:30 am and 10:30 am when the proportion

of A and B grades are at their highest levels, whereas the EW grades are at their

lowest.

7.2 Implementing Trigonometric Functions in

MATLAB for the Years Since 2003

When we visually assessed the cyclic behavior in the data, we determined that

the best cyclic behavior appeared to be between 2007 and 2013. Also, an analysis of

cyclic behavior between 2005 and 2011 was conducted, and we calculated the error via

7.2. Implementing Trigonometric Functions in
MATLAB for the Years Since 2003 50

L2 norms (7.0.7). Trigonometric interpolating polynomials are cyclic, and in general

we expected about a six to seven year period.

Figure 7.2.1: Proportion of student grades in ‘MAT135’ against the years since 2003
in the fall

Figure 7.2.1 is a plot of the trigonometric interpolating polynomials of the grade

proportions for the fall ‘MAT135’ class. There appears to be a cycle between T = 4

and T = 10, that is, the years 2007 and 2013. The trend in the data suggests that

the top ‘MAT135’ students appear in the years 2007 and 2013, or every 6 years, since

the A grades peak and the C and EW grades decrease. Lastly, the model appears to

represent the data well.

7.2. Implementing Trigonometric Functions in
MATLAB for the Years Since 2003 51

Figure 7.2.2: Proportion of student grades in ‘MAT135’ against the years since 2003
in the spring

Figure 7.2.2 suggests that the top spring ‘MAT135’ students occur in 2004 and

2011, in which the trend in the data suggests that roughly every seven years there is

a large increase in A grades and a significant decrease in the EW grades.

Figure 7.2.3 suggests that the top fall ‘MAT250’ students occur in 2009 and 2015,

in which the trend in the data suggests that roughly every 6 years there is a large

increase in A grades and a significant decrease in the EW grades.

Lastly, figure 7.2.4 suggests that overall the students preform worse as the pro-

portion of EW grades are large. In fact, the A, B, C, and EW grades follow similar

trends. It appears that the top spring ‘MAT250’ students occur roughly in 2008 and

2015, in which the trend in the data suggest that roughly every seven years there is

a peak in A grades and a decrease in the EW grades.

7.2. Implementing Trigonometric Functions in
MATLAB for the Years Since 2003 52

Figure 7.2.3: Proportion of student grades in ‘MAT250’ against the years since 2003
in the fall

Overall, the trends and cyclic behavior appears to be consistent in the data re-

gardless of the class taught. This is shown by the models fitting the data fairly well

in the same cycle of T = 4 and T = 10. Calculating the L2-norm errors for each

grade proportions as well as the overall error we have the results in Table 7.1.

A B C D EW Total Error Class

0.1186 0.1963 0.1311 0.1302 0.1355 0.3242 Fall ‘MAT135’
0.2122 0.1667 0.1367 0.1223 0.1833 0.3743 Spring ‘MAT135’
0.1342 0.1786 0.1679 0.1541 0.2585 0.4107 Fall ‘MAT250’
0.1428 0.1344 0.2250 0.1684 0.2114 0.4026 Spring ‘MAT250’

Table 7.1: L2-norm error for cycle T = 4 and T = 10

7.2. Implementing Trigonometric Functions in
MATLAB for the Years Since 2003 53

Figure 7.2.4: Proportion of student grades in‘MAT250’ against the years since 2003
in the spring

Similarly, calculating the L2-norm errors for each grade proportions as well as the

overall error and assuming a cyclic pattern between T = 2 and T = 8, we have the

results in Table 7.2.

A B C D EW Total Error Class

0.1733 0.1792 0.1203 0.1154 0.1634 0.3415 Fall ‘MAT135’
0.2460 0.1443 0.1550 0.1169 0.1712 0.3851 Spring ‘MAT135’
0.1157 0.1445 0.1675 0.1339 0.2430 0.3732 Fall ‘MAT250’
0.1404 0.1359 0.2398 0.1715 0.2234 0.4183 Spring ‘MAT250’

Table 7.2: L2-norm error for cycle T = 2 and T = 8

From Table 7.1 and 7.2 we deduce that the assumption of a cyclic behavior between

T = 4 and T = 10 more accurately predicts student grades; however, the L2-norms

are very similar, so assuming either cyclic behavior will follow the general trend.

54

Chapter 8

Comparing the Models

We now summarize the results of the thesis and briefly discuss alternative methods.

Firstly, for the statistical study we have the following final logLoss values for the

POLR, VGLM, CART, and RF model in Table 8.1.

POLR 1.5412
VGLM (parallel = TRUE) 1.5412
VGLM (parallel = FALSE) 1.5376

CART 1.5228
RF 1.4602

“Dumb” logLoss 1.6094
Non-informative logLoss 1.5448

Table 8.1: Final logLoss values using the testing set

The POLR, VGLM, and CART model have logLoss values that agree up to 1.5 (one

decimal place). Therefore, these models are very similar in terms of performance.

Since the CART model is more interpretable than the data models, we do not require

prior knowledge of log odds and logistic regression to interpret the results, and the

logLoss is slightly lower, we are inclined to choose the CART model to prognosticate

student grades. Also, all the models produce logLoss values that are less than the

“dumb” and non-informative logLoss values. Our models are performing better than

assuming a uniform distribution of students’ grades, or assuming a specified non-

uniform distribution of grades. However, if the goal is to find the most accurate

model that predicts the ordinal students’ grades then we are inclined to choose the

55

random forests model but lose the interpretability.

The caret package [11] offers a large range of classification and regression models

that could be potential alternatives to the models used in this thesis. Some of the

alternative models were different variations of the CART and RF models. We used

the methods of cross validation and trained all of these models to determine if there

were any other models that could be an attractive alternative. However, the models

we selected gave the lowest logLoss by training the models of the training set. Also,

since our data is not that large we could possible consider a cost-sensitive logistic

regression that contains weights which account for unbalanced data sets.

The variables used in this thesis were easily accessible from Murray State’s records;

however, in a future study we could potentially collect data on which professor taught

each class to evaluate their performances. Obtaining the instructors was less accessible

from the data we collected; however, if we did obtain this information we could

consider the instructors as a random effect in the models. Furthermore, we could

investigate a linear mixed model variation for the ordinal regression models such as

POLR and VGLM. Also, we could consider more mathematics and statistics courses

or collect the data before 2003 to obtain a longer data set, and we could consider

finals week exam times, previous GPA results on each individual, or previous high

school data to make the data set wider. Lastly, we could consider alternative machine

learning models that could out-perform the RF model, such as neural networks, to

evaluate our ordinal output.

From the numerical study we ascertained if classes should be taught at specified

non-traditional times. In a majority of the cases, the trigonometric interpolating

polynomial models are a reasonable predictor of the proportion of student grade

distributions. For a fall ‘MAT135’ class, it was not beneficial to introduce a class at

02:30 pm as the models predicted a drop in the proportion of A and B grades and a

significant increase in the D and EW grades. The data refects this statement. For a

56

spring ‘MAT135’ class, it is beneficial to hold an 08:00 am class as performance would

improve compared to an 08:30 am class. For a fall ‘MAT250’ class, it is beneficial to

hold an 08:00 am class. Lastly, for a spring ‘MAT250’ class, it is best to attend the

09:30 am and 10:30 am class.

From the random forests model we deduced that the ‘Class’ variable was not

important, with an importance value of 4.0631, and the ‘YrSince2003’ was very im-

portant, with an importance value of 53.6699. This is reflected in the numerical study,

as regardless of the class all the models followed an accurate cyclic pattern between

2007 and 2013, or 2005 and 2011.

In fact, there were 202 ‘MAT135’ classes and 143 ‘MAT250’ classes, which is likely

due to the fact than the ‘MAT135’ classes are easier that the ‘MAT250’ classes. Also,

discussions with faculty suggested that students with weaker algebra skills tend to be

heavily penalized in ‘MAT250’ classes, whereas weaker statistical students do not get

as heavily penalized in a ‘MAT135’ class. This leads to more students attending a

‘MAT135’ classes which has the results that the ‘Size’ input is statistically important.

In recent years there has been an increase in statistical classes offered in high school

and generally a decrease in algebraic skills, this leads to students being more prepared

for a ‘MAT135’ class and less prepared for a ‘MAT250’ class. This would explain

the statistical significance of the ‘YrSince2003’ input, in which statistical classes are

producing more A grades and algebraic classes are producing more C, D, and EW

grades.

57

Appendix A

R Code

Here is the R code for the thesis, separated into code for each chapter.

A.1 Data Set Up

#Importing Data

require(readxl)

require(tidyverse)

import.data <- read_excel("datafile.location.xlsx")

View(import.data)

#Fixing the time component in the data set

import.data.new <- import.data %>% #Calculus 1 (MAT250) &

#Intro Statistics (MAT135)

mutate(StartTime=format(as.POSIXct(import.data$StartTime ,

format=‘%m/%d/%Y %H:%M:%S’),

format=‘%H:%M’)) #fix time component

View(import.data.new) #In Semester: 0=fall , 1= spring

str(import.data.new)

#Splitting into training and testing set

set.seed (1234)

trainind <- sort(sample (1: nrow(import.data.new),

size=floor(nrow(import.data.new)*(2/3))))

testind <- setdiff (1: nrow(import.data.new), trainind)

datatrain <- import.data.new[trainind ,]

datatest <- import.data.new[testind ,]

#Change the training data from "wide" to "long" format

TrainingLong <- datatrain %>%

pivot_longer(cols=-c(Year ,Semester ,Section ,Day ,StartTime ,

Class ,Size),names_to="Grade",

values_to="Freq") %>%

mutate(Grade=factor(Grade ,ordered=TRUE ,levels=c("EW","D","C",

"B","A"))) %>%

A.2. Training the Models Code 58

mutate(Section=factor(Section)) %>% # treat as a factor

mutate(Semester=ifelse(Semester ==0,"Fall","Spring")) %>%

mutate(YrSince2003=Year -2003) %>%

mutate(StartTime=factor(StartTime)) %>%

mutate(Class=factor(Class))

View(TrainingLong)

#Changing the training data into "longest" format

TrainingLongest <- TrainingLong %>%

uncount(Freq)

#Change the testing data from ‘‘wide" to ‘‘long" format

TestingLong <- datatest %>%

pivot_longer(cols=-c(Year ,Semester ,Section ,Day ,StartTime ,

Class ,Size),names_to="Grade",

values_to="Freq") %>%

mutate(Grade=factor(Grade ,ordered=TRUE ,levels=c("EW","D","C",

"B","A"))) %>%

mutate(Section=factor(Section)) %>% # treat as a factor

mutate(Semester=ifelse(Semester ==0,"Fall","Spring")) %>%

mutate(YrSince2003=Year -2003) %>%

mutate(StartTime=factor(StartTime)) %>%

mutate(Class=factor(Class))

View(TestingLong)

#Changing the testing data into "longest" format

TestingLongest <- TestingLong %>%

uncount(Freq)

#Selecting the appropriate inputs

library(tidyr)

Grades.training <- TrainingLongest[,c("Semester","Size","StartTime",

"Day","Class","YrSince2003",

"Grade")] %>%

mutate(Semester=factor(Semester)) #make Semester a factor

Grades.training <- as.data.frame(Grades.training)

Grades.testing <- TestingLongest[,c("Semester","Size","StartTime",

"Day","Class","YrSince2003",

"Grade")] %>%

mutate(Semester=factor(Semester)) #make Semester a factor

Grades.testing <- as.data.frame(Grades.testing)

A.2 Training the Models Code

#Non -informative logLos

p.A<-0.15

p.B<-0.3

A.2. Training the Models Code 59

p.C<-0.25

p.D<-0.10

p.EW<-0.20

-(p.A*log(p.A))-(p.B*log(p.B))-(p.C*log(p.C))

-(p.D*log(p.D))-(p.EW*log(p.EW))

[1] 1.54448

#Implementing k-fold Cross Validation

require(caret)

set.seed (1234)

train_controlKFCV <- trainControl(method="cv",

number =10,

classProbs=TRUE ,

summaryFunction=mnLogLoss)

#Ordered Logistic or Probit Regression

require(MASS)

set.seed (1234)

tune.gridpolr <- expand.grid(method = c("logistic","probit"))

train.polr <- train(Grade~Semester+Size+StartTime+Day+Class+

YrSince2003 ,

data=Grades.training ,

tuneGrid = tune.gridpolr ,

trControl=train_controlKFCV ,

method="polr",

metric="logLoss")

print(train.polr)

#Cumulative Probability Model for Ordinal Data

require(VGAM)

set.seed (1234)

train.vglm <- train(Grade~Semester+Size+StartTime+Day+Class+

YrSince2003 ,

data=Grades.training ,

trControl=train_controlKFCV ,

method="vglmCumulative",

metric="logLoss")

print(train.vglm)

#CART

require(rpart)

require(rpart)

set.seed (1234)

train.rpart <- train(Grade~Semester+Size+StartTime+Day+Class+

YrSince2003 ,

data=Grades.training ,

trControl=train_controlKFCV ,

A.2. Training the Models Code 60

tuneLength =100,

method="rpart",

metric="logLoss")

print(train.rpart)

train.rpart$finalModel$cp

cp =0.001869883 w/ logLoss of 1.555764

#CART One SE Rule

require(rpart)

set.seed (1234)

train.rpart1SE <- train(Grade~Semester+Size+StartTime+Day+Class+

YrSince2003 ,

data=Grades.training ,

trControl=train_controlKFCV ,

tuneLength =100,

method="rpart1SE",

metric="logLoss")

print(train.rpart1SE)

train.rpart1SE$finalModel$cp

cp=0 w/ logLoss of 1.558576

#Maxdepth controlling for cp =0.001869883

require(rpart)

require(magicfor)

magic_for(print , silent = TRUE)

for (i in seq(from=2,to=30,by=1)) {

set.seed (1234)

tune.gridrpart2 <-expand.grid(maxdepth=i)

train.rpart2 <- train(Grade~Semester+Size+StartTime+Day+Class+

YrSince2003 ,

data=Grades.training ,

trControl=train_controlKFCV ,

tuneGrid=tune.gridrpart2 ,

cp =0.001869883 ,

method="rpart2",

metric="logLoss")

print(train.rpart2$results)

}

require(forcats)

train.cart.maxdepth <- magic_result_as_dataframe ()

maxdepth does not change

#Random Forests

require(ranger)

set.seed (1234)

tune.gridranger <- expand.grid(mtry = c(2:6),

splitrule="gini",

A.2. Training the Models Code 61

min.node.size =1)

train.rf <- train(Grade~Semester+Size+StartTime+Day+Class+

YrSince2003 ,

data=Grades.training ,

trControl=train_controlKFCV ,

tuneGrid=tune.gridranger ,

method="ranger",

metric="logLoss")

print(train.rf)

require(magicfor)

magic_for(print , silent = TRUE)

for (i in seq(from =100,to=5000 ,by =50)) {

set.seed (1234)

Grades.rf.trees <- ranger(Grade~Semester+Size+StartTime+Day+

Class+YrSince2003 ,

case.weights=Grades.training$Freq ,

data=Grades.training ,

num.trees=i,

mtry=2,

splitrule="gini",

min.node.size=1,

probability=TRUE)

predict.rf.trees <- stats:: predict(Grades.rf.trees ,

data=Grades.training ,

type="response")

print(ModelMetrics :: mlogLoss(actual=Grades.training$Grade ,

predicted=predict.rf.trees$predictions))

}

require(forcats)

train.rf.trees <- magic_result_as_dataframe ()

colnames(train.rf.trees)

Rename columns

names(train.rf.trees)[names(train.rf.trees) == "i"] <- "num.trees"

names(train.rf.trees)[names(train.rf.trees) == "ModelMetrics ::

mlogLoss(actual=Grades.training$Grade ,

predicted=predict.rf.trees$predictions)"] <- "logLoss"

view(train.rf.trees)

require(ggplot2)

ggplot(data=train.rf.trees ,aes(train.rf.trees$num.trees ,

train.rf.trees$logLoss))+

theme_bw()+ geom_smooth(method="loess",se=FALSE)+

geom_point(shape =4)+

xlab("Number of Trees , num.trees")+

ylab("logLoss")+

theme(text = element_text(size =15))

#low at about 1500 trees

62

Appendix B

R Code for POLR
#Testing and Implementing the ’polr ’ function in the ’MASS ’

#package

require(MASS)

Grades.polr <- polr(Grade~Semester+Size+StartTime+Day+Class+

YrSince2003 ,

data = Grades.testing ,

method ="logistic",

Hess = TRUE)

summary(Grades.polr)

#Example

eta <- -0.21325*(1)+0.01187*(44) -0.38526*(1)+0.13213*(4)

logit.d.or.lower <- -0.0833-eta

d.or.lower <-1/(1+exp(-logit.d.or.lower))

logit.ew.or.lower <- -0.6259-eta

ew.or.lower <-1/(1+ exp(-logit.ew.or.lower))

#Prediction and final logLoss value of the model

require(stats)

predict.polr <- predict(Grades.polr ,newdata=Grades.testing ,

type = "probs")

predict.polr[1,]

require(ModelMetrics)

mlogLoss(actual = Grades.testing$Grade , predicted = predict.polr)

[1] 1.541234

63

Appendix C

R Code for VGLM
#Testing and Implementing the ’vglm ’ function in the ’VGAM ’

#package

require(VGAM)

Grades.vglm <- vglm(Grade~Semester+Size+StartTime+Day+Class+

YrSince2003 ,

data=Grades.testing ,

family = VGAM:: cumulative(link = "logit",

parallel = TRUE))

summary(Grades.vglm)

#Example

alpha.1<- -0.625973

alpha.2<- -0.083342

beta.m<-c(0.123250 , -0.011870 ,0.385285 ,0.222301 ,0.127507 ,0.114558 ,

0.129123 ,0.078666 ,0.203294 , -0.132130 ,0.181196 , -0.028515)

x.example <-c(1,44,1,0,0,0,0,0,0,4,0,0)

etaD <-alpha .2+ sum(beta.m*x.example)

prob.D.lower <-1/(1+ exp(-1*etaD))

etaEW <-alpha .1+sum(beta.m*x.example)

prob.EW.lower <-1/(1+ exp(-1*etaEW))

prob.d<-prob.D.lower -prob.EW.lower

prob.d

#Prediction and final logLoss value of the model

require(stats)

predict.vglm <- predict(Grades.vglm ,newdate=Grades.testing ,

type="response")

predict.vglm[1,]

require(ModelMetrics)

mlogLoss(actual=Grades.testing$Grade ,predicted=predict.vglm)

[1] 1.541234

64

Appendix D

R Code for CART
#Testing and Implementing the ’rpart ’ function in the ’rpart ’

#package for cp =0.001869883

require(rpart)

Grades.cart <- rpart(Grade~Semester+Size+StartTime+Day+Class+

YrSince2003 ,

data=Grades.testing ,

cp =0.001869883 ,

maxdepth =5)

print(Grades.cart)

Grades.cart$cptable

#Creating the Classification Tree

require(rpart.plot)

rpart.plot(Grades.cart ,box.palette=list("Reds", "Blues","Oranges",

"Greens","Grays"),)

##Prediction and logLoss values

require(stats)

predict.cart <- predict(Grades.cart ,newdata=Grades.testing ,

probability=TRUE)

require(ModelMetrics)

mlogLoss(actual=Grades.testing$Grade ,predicted=predict.cart)

[1] 1.52279

65

Appendix E

R Code for Random Forests
#Testing and Implementing the ’ranger ’ function in the ’rpart ’

#package

set.seed (1234)

Grades.rf <-ranger(Grade~Semester+Size+StartTime+Day+Class+

YrSince2003 ,

data=Grades.testing ,

mtry=2,

splitrule="gini",

importance="impurity",

min.node.size=1,

num.trees =1500 ,

probability=TRUE ,

classification=TRUE)

print(Grades.rf)

Grades.rf$variable.importance

##Prediction and logLoss values

require(stats)

predict.rf <- predict(Grades.rf ,data=Grades.testing ,type="response")

predict.rf$predictions [1,]

require(ModelMetrics)

mlogLoss(actual=Grades.testing$Grade ,predicted=predict.rf$predictions)

[1] 1.460193

66

Appendix F

MATLAB Code for Trigonometric
Polynomials

Matlab Code

function [px, py, perror] =

computeTrigonometricInterpolationError(y,px,ex,exy)

m = length(y);

n = floor((m+1)/2);

z = fft(y)/m;

a0 = z(1) ;

an = 2*real(z(2:n));

anp1 = z(n+1);

bn = -2*imag(z(2:n));

k = 1: length(an);

py = a0 + an*cos(k’*px) + bn*sin(k’*px);

perror = a0 + an*cos(k’*ex) + bn*sin(k’*ex);

if (mod(m,2)== 0)

py = py + anp1*cos(n*px);

perror = perror + anp1*cos(n*ex);

end

perror = norm(perror -exy);

end

function [NT_A, NT_B, NT_C, NT_D, NT_EW] =

getAllNonTraditionalCumulativeStartTimeData(data ,term ,

course ,STimes)

NT_A = getNonTraditionalCumulativeStartTimeData(data ,term ,

course ,STimes ,‘A’);

NT_B = getNonTraditionalCumulativeStartTimeData(data ,term ,

course ,STimes ,‘B’);

NT_C = getNonTraditionalCumulativeStartTimeData(data ,term ,

course ,STimes ,‘C’);

67

NT_D = getNonTraditionalCumulativeStartTimeData(data ,term ,

course ,STimes ,‘D’);

NT_EW = getNonTraditionalCumulativeStartTimeData(data ,term ,

course ,STimes ,‘EW ’);

end

function H = getCumulativeStartTimeData(data ,term , course ,

STimes ,myGrade)

[~,k] = size(STimes);

H = zeros(1,k);

posSemester = strcmp(data.Semester (:),term);

posClass = strcmp(data.Class (:),course);

pos = eq(posSemester ,1) & eq(posClass ,1);

D = data(pos ,:);

posGrade = strcmp(D.Grade ,myGrade);

D1 = D(posGrade ,:);

for i = 1:k

posTimes = strcmp(D1.StartTime ,STimes(1,i));

p = find(posTimes ==1);

H(i) = sum(D1(p,:).Freq) / sum(D1(p,:).Size);

end

end

function H = getNonTraditionalCumulativeStartTimeData(data ,

term , course ,STimes ,myGrade)

[~,k] = size(STimes);

H = zeros(1,k);

posSemester = strcmp(data.Semester (:),term);

posClass = strcmp(data.Class (:),course);

pos = eq(posSemester ,1) & eq(posClass ,1);

D = data(pos ,:);

posGrade = strcmp(D.Grade ,myGrade);

D1 = D(posGrade ,:);

for i = 1:k

posTimes = strcmp(D1.StartTime ,STimes(1,i));

p = find(posTimes ==1);

H(i) = sum(D1(p,:).Freq) / sum(D1(p,:).Size);

end

end

function YGD = getYearGradeData(data ,term , course ,STimes ,

myGrade , year)

68

[~,k] = size(STimes);

cy = size(year);

YGD = zeros(1,cy(2));

posSemester = strcmp(data.Semester (:),term);

posClass = strcmp(data.Class (:),course);

pos = (eq(posSemester ,1) & eq(posClass ,1));

D = data(pos ,:);

posGrade = strcmp(D.Grade ,myGrade);

D = D(posGrade ,:);

rD = size(D);

posTimes = zeros(rD(1) ,1);

for i = 1:k

posTimes = posTimes + strcmp(D.StartTime ,STimes(1,i));

end

D = D(eq(posTimes ,1) ,:);

for i = 1:cy(2)

posYear = eq(D.YrSince2003 ,year(1,i));

D1 = D(eq(posYear ,1) ,:);

YGD(i) = sum(D1.Freq) / sum(D1.Size);

end

end

clear

clc

statisticsFallStartTimes = {‘9:30’, ‘10:30’, ‘11:30’,

‘12:30’,‘13:30’};

statisticsFallNonTraditionalStartTimes = { ‘14:30 ’};

T = readtable(‘Grades.csv ’);

data = T(:,{‘Semester ’,‘Size ’,‘StartTime ’,‘Day ’,‘Class ’,‘

YrSince2003 ’,‘Freq ’,‘Grade ’});

H_A = getCumulativeStartTimeData(data ,‘Fall ’, ‘MAT135 ’,

statisticsFallStartTimes ,‘A’);

H_B = getCumulativeStartTimeData(data ,‘Fall ’, ‘MAT135 ’,

statisticsFallStartTimes ,‘B’);

H_C = getCumulativeStartTimeData(data ,‘Fall ’, ‘MAT135 ’,

statisticsFallStartTimes ,‘C’);

H_D = getCumulativeStartTimeData(data ,‘Fall ’, ‘MAT135 ’,

statisticsFallStartTimes ,‘D’);

H_EW = getCumulativeStartTimeData(data ,‘Fall ’, ‘MAT135 ’,

statisticsFallStartTimes ,‘EW ’);

% H_A + H_B + H_C + H_D + H_EW

[NT_A, NT_B, NT_C, NT_D, NT_EW] =

getAllNonTraditionalCumulativeStartTimeData(data ,‘Fall ’, ‘

MAT135 ’,statisticsFallNonTraditionalStartTimes);

m = length(H_A);

x = linspace (0,2*pi,m+1);

69

figure

plot(x(1:end -1),H_A,‘ro ’,x(1:end -1),H_B,‘b+’,x(1:end -1),H_C,‘

gd’,x(1:end -1),H_D,‘cs ’,x(1:end -1),H_EW ,‘mx ’,‘LineWidth ’,2)

ylabel(‘Proportion of Students ’)

xlabel(‘Hours after 9:30 AM ’)

title(‘MAT135 Fall Semester ’)

legend(‘A’,‘B’,‘C’,‘D’,‘EW ’)

xticks ([0 2*pi/5 4*pi/5 6*pi/5 8*pi/5 2*pi 12*pi/5])

xticklabels ({‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’})

xlim ([0 2*pi+pi/6])

hold on

%

% plot Non Traditional data

% plot(x(end),NT_A, ‘ko’, x(end),NT_B, ‘k+’, x(end),NT_C, ‘kd

’, x(end),NT_D, ‘ks’,‘LineWidth ’,2)

plot(x(end),NT_A, ‘ko ’, x(end),NT_B, ‘k+’, x(end),NT_C, ‘kd’,

x(end),NT_D, ‘ks ’, x(end),NT_EW, ‘kx’,‘LineWidth ’,2)

%

% compute the interpolating polynomial

%

NumInt = 200;

x_int = linspace(-pi/2,2*pi+pi/2,NumInt);

[pxA , pyA] = computeTrigonometricInterpolation(H_A,x_int);

[pxB , pyB] = computeTrigonometricInterpolation(H_B,x_int);

[pxC , pyC] = computeTrigonometricInterpolation(H_C,x_int);

[pxD , pyD] = computeTrigonometricInterpolation(H_D,x_int);

[pxEW , pyEW] = computeTrigonometricInterpolation(H_EW,x_int);

% plot(pxA ,pyA , ‘r.’,pxB ,pyB , ‘b.’,pxC ,pyC , ‘g--’,pxD ,pyD , ‘c

-.’,‘LineWidth ’,2)

plot(pxA ,pyA , ‘r.’,pxB ,pyB , ‘b:’,pxC ,pyC , ‘g--’,pxD ,pyD , ‘c

-.’,pxEW ,pyEW , ‘m-’,‘LineWidth ’ ,2)

%[pyA (167) ,pyB (167) ,pyC (167) ,pyD (167) ,pyEW (167)]

%[NT_A, NT_B, NT_C, NT_D, NT_EW]

clear

clc

calculusFallStartTimes = {‘8:30’,‘9:30’, ‘10:30’, ‘11:30’,

‘12:30’};

calculusFallNonTraditionalStartTimes = {‘8:00 ’};

T = readtable(’Grades.csv’);

data = T(:,{‘Semester ’,‘Size ’,‘StartTime ’,‘Day ’,‘Class ’,‘

YrSince2003 ’,‘Freq ’,‘Grade ’});

H_A = getCumulativeStartTimeData(data ,‘Fall ’, ‘MAT250 ’,

calculusFallStartTimes ,‘A’);

H_B = getCumulativeStartTimeData(data ,‘Fall ’, ‘MAT250 ’,

calculusFallStartTimes ,‘B’);

H_C = getCumulativeStartTimeData(data ,‘Fall ’, ‘MAT250 ’,

70

calculusFallStartTimes ,‘C’);

H_D = getCumulativeStartTimeData(data ,‘Fall ’, ‘MAT250 ’,

calculusFallStartTimes ,‘D’);

H_EW = getCumulativeStartTimeData(data ,‘Fall ’, ‘MAT250 ’,

calculusFallStartTimes ,‘EW ’);

% H_A + H_B + H_C + H_D + H_EW

[NT_A, NT_B, NT_C, NT_D, NT_EW] =

getAllNonTraditionalCumulativeStartTimeData(data ,‘Fall ’, ‘

MAT250 ’,calculusFallNonTraditionalStartTimes);

m = length(H_A);

x = linspace (0,2*pi ,m+1);

figure

% plot(x(1:end -1),H_A,‘ro’,x(1:end -1),H_B,‘b+’,x(1:end -1),H_C

,‘gd’,x(1:end -1),H_D,‘cs’,‘LineWidth ’,2)

plot(x(1:end -1),H_A,‘ro ’,x(1:end -1),H_B,‘b+’,x(1:end -1),H_C,‘

gd’,x(1:end -1),H_D,‘cs ’,x(1:end -1),H_EW ,‘mx ’,‘LineWidth ’,2)

ylabel(‘Proportion of Students ’)

xlabel(‘Hours after 8:30 AM ’)

title(‘MAT250 Fall Semester ’)

legend(‘A’,‘B’,‘C’,‘D’,‘EW ’)

xticks ([-2*pi/5 0 2*pi/5 4*pi/5 6*pi/5 8*pi/5 2*pi 12*pi/5])

xticklabels({‘-1’,‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’})

xlim([-2*pi/5 2*pi])

hold on

%

% plot Non Traditional data

%

% plot (-0.5*x(2),NT_A, ‘ko’, -0.5*x(2),NT_B, ‘k+’, -0.5*x(2),

NT_C, ‘kd ’, -0.5*x(2),NT_D, ‘ks ’, ‘LineWidth ’,2)

plot (-0.5*x(2),NT_A, ‘ko ’, -0.5*x(2),NT_B, ‘k+’, -0.5*x(2),NT

_C, ‘kd’, -0.5*x(2),NT_D, ‘ks ’,-0.5*x(2),NT_EW, ‘kx’, ‘

LineWidth ’,2)

%

% compute the interpolating polynomial

%

NumInt = 200;

x_int = linspace(-pi/2,2*pi+pi/2,NumInt);

[pxA , pyA] = computeTrigonometricInterpolation(H_A,x_int);

[pxB , pyB] = computeTrigonometricInterpolation(H_B,x_int);

[pxC , pyC] = computeTrigonometricInterpolation(H_C,x_int);

[pxD , pyD] = computeTrigonometricInterpolation(H_D,x_int);

[pxEW , pyEW] = computeTrigonometricInterpolation(H_EW,x_int);

% plot(pxA ,pyA , ‘r.’,pxB ,pyB , ‘b:’,pxC ,pyC , ‘g--’,pxD ,pyD , ‘c

71

-.’,‘LineWidth ’,2)

plot(pxA ,pyA , ‘r.’,pxB ,pyB , ‘b:’,pxC ,pyC , ‘g--’,pxD ,pyD , ‘c

-.’,pxEW ,pyEW , ‘m-’,‘LineWidth ’ ,2)

clear

clc

statisticsSpringStartTimes = {‘8:30’,‘9:30’, ‘10:30’, ‘11:30’,

‘12:30’,‘13:30’};

statisticsSpringNonTraditionalStartTimes = { ‘8:00’};

T = readtable(‘Grades.csv ’);

data = T(:,{‘Semester ’,‘Size ’,‘StartTime ’,‘Day ’,‘Class ’,‘

YrSince2003 ’,‘Freq ’,‘Grade ’});

H_A = getCumulativeStartTimeData(data ,‘Spring ’, ‘MAT135 ’,

statisticsSpringStartTimes ,‘A’);

H_B = getCumulativeStartTimeData(data ,‘Spring ’, ‘MAT135 ’,

statisticsSpringStartTimes ,‘B’);

H_C = getCumulativeStartTimeData(data ,‘Spring ’, ‘MAT135 ’,

statisticsSpringStartTimes ,‘C’);

H_D = getCumulativeStartTimeData(data ,‘Spring ’, ‘MAT135 ’,

statisticsSpringStartTimes ,‘D’);

H_EW = getCumulativeStartTimeData(data ,‘Spring ’, ‘MAT135 ’,

statisticsSpringStartTimes ,‘EW ’);

% H_A + H_B + H_C + H_D + H_EW

[NT_A, NT_B, NT_C, NT_D, NT_EW] =

getAllNonTraditionalCumulativeStartTimeData(data ,‘Spring ’,

‘MAT135 ’,statisticsSpringNonTraditionalStartTimes);

m = length(H_A);

x = linspace (0,2*pi ,m+1);

figure

% plot(x(1:end -1),H_A,‘ro’,x(1:end -1),H_B,‘b+’,x(1:end -1),H_C

,‘gd’,x(1:end -1),H_D,‘cs’,‘LineWidth ’,2)

plot(x(1:end -1),H_A,‘ro ’,x(1:end -1),H_B,‘b+’,x(1:end -1),H_C,‘

gd’,x(1:end -1),H_D,‘cs ’,x(1:end -1),H_EW ,‘mx ’,‘LineWidth ’,2)

ylabel(‘Proportion of Students ’)

xlabel(‘Hours after 8:30 AM ’)

title(‘MAT135 Spring Semester ’)

legend(‘A’,‘B’,‘C’,‘D’,‘EW ’)

xticks([-pi/3 0 pi/3 2*pi/3 pi 4*pi/3 5*pi/3 2*pi])

xticklabels({‘-1’,‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’})

xlim([-x(2) 2*pi+pi/4])

hold on

%

% plot Non Traditional data

%

% plot (-0.5*x(2),NT_A, ‘ko’, -0.5*x(2),NT_B, ‘k+’, -0.5*x(2),

72

NT_C, ‘kd ’, -0.5*x(2),NT_D, ‘ks ’, ‘LineWidth ’,2)

plot (-0.5*x(2),NT_A, ‘ko ’, -0.5*x(2),NT_B, ‘k+’, -0.5*x(2),NT

_C, ‘kd’, -0.5*x(2),NT_D, ‘ks ’,-0.5*x(2),NT_EW, ‘kx’, ‘

LineWidth ’,2)

%

% compute the interpolating polynomial

%

NumInt = 200;

x_int = linspace(-pi/2,2*pi+pi/2,NumInt);

[pxA , pyA] = computeTrigonometricInterpolation(H_A,x_int);

[pxB , pyB] = computeTrigonometricInterpolation(H_B,x_int);

[pxC , pyC] = computeTrigonometricInterpolation(H_C,x_int);

[pxD , pyD] = computeTrigonometricInterpolation(H_D,x_int);

[pxEW , pyEW] = computeTrigonometricInterpolation(H_EW,x_int);

% plot(pxA ,pyA , ‘r.’,pxB ,pyB , ‘b.’,pxC ,pyC , ‘g--’,pxD ,pyD , ‘c

-.’,‘LineWidth ’,2)

plot(pxA ,pyA , ‘r.’,pxB ,pyB , ‘b:’,pxC ,pyC , ‘g--’,pxD ,pyD , ‘c

-.’,pxEW ,pyEW , ‘m-’,‘LineWidth ’ ,2)

clear

clc

calculusSpringStartTimes ={‘9:30’, ‘10:30’, ‘11:30’, ‘12:30 ’};

T = readtable(‘Grades.csv ’);

data = T(:,{‘Semester ’,‘Size ’,‘StartTime ’,‘Day ’,‘Class ’,‘

YrSince2003 ’,‘Freq ’,‘Grade ’});

H_A = getCumulativeStartTimeData(data ,‘Spring ’, ‘MAT250 ’,

calculusSpringStartTimes ,‘A’);

H_B = getCumulativeStartTimeData(data ,‘Spring ’, ‘MAT250 ’,

calculusSpringStartTimes ,‘B’);

H_C = getCumulativeStartTimeData(data ,‘Spring ’, ‘MAT250 ’,

calculusSpringStartTimes ,‘C’);

H_D = getCumulativeStartTimeData(data ,‘Spring ’, ‘MAT250 ’,

calculusSpringStartTimes ,‘D’);

H_EW = getCumulativeStartTimeData(data ,‘Spring ’, ‘MAT250 ’,

calculusSpringStartTimes ,‘EW ’);

%H_A + H_B + H_C + H_D + H_EW

m = length(H_A);

x = linspace (0,2*pi,m+1);

figure

% plot(x(1:end -1),H_A,‘ro’,x(1:end -1),H_B,‘b+’,x(1:end -1),H_C

,‘gd’,x(1:end -1),H_D,‘cs’,‘LineWidth ’,2)

plot(x(1:end -1),H_A,‘ro’,x(1:end -1),H_B,‘b+’,x(1:end -1),H_C,‘

gd’,x(1:end -1),H_D,‘cs ’,x(1:end -1),H_EW ,‘mx ’,‘LineWidth ’,2)

ylabel(‘Proportion of Students ’)

xlabel(‘Hours after 9:30 AM ’)

73

title(‘MAT250 Spring Semester ’)

legend(‘A’,‘B’,‘C’,‘D’,‘EW ’)

xticks ([0 pi/2 pi 3*pi/2 2*pi])

xticklabels ({‘0’, ‘1’, ‘2’, ‘3’, ‘4’})

xlim ([0 2*pi])

hold on

NumInt = 200;

x_int = linspace(-pi/2,2*pi+pi/2,NumInt);

[pxA , pyA] = computeTrigonometricInterpolation(H_A,x_int);

[pxB , pyB] = computeTrigonometricInterpolation(H_B,x_int);

[pxC , pyC] = computeTrigonometricInterpolation(H_C,x_int);

[pxD , pyD] = computeTrigonometricInterpolation(H_D,x_int);

[pxEW , pyEW] = computeTrigonometricInterpolation(H_EW,x_int);

% plot(pxA ,pyA , ‘r.’,pxB ,pyB , ‘b:’,pxC ,pyC , ‘g--’,pxD ,pyD , ‘c

-.’,‘LineWidth ’,2)

plot(pxA ,pyA , ‘r.’,pxB ,pyB , ‘b:’,pxC ,pyC , ‘g--’,pxD ,pyD , ‘c

-.’,pxEW ,pyEW , ‘m-’,‘LineWidth ’ ,2)

clear;

clc;

close all;

statisticsFallStartTimes = {‘9:30’, ‘10:30’, ‘11:30’,

‘12:30’,‘13:30’};

statisticsFallNonTraditionalStartTimes = { ‘14:30 ’};

%

statisticsSpringStartTimes = {‘8:30’,‘9:30’, ‘10:30’, ‘11:30’,

‘12:30’,‘13:30’};

statisticsSpringNonTraditionalStartTimes = { ‘8:00’};

%

calculusFallStartTimes = {‘8:30’,‘9:30’, ‘10:30’, ‘11:30’,

‘12:30’};

calculusFallNonTraditionalStartTimes = {‘8:00 ’};

%

calculusSpringStartTimes ={‘9:30’, ‘10:30’, ‘11:30’, ‘12:30 ’};

Years = [0, 1, 2, 3,4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15];

T = readtable(‘Grades.csv ’);

data = T(:,{‘Semester ’,‘Size ’,‘StartTime ’,‘Day ’,‘Class ’,‘

YrSince2003 ’,‘Freq ’,‘Grade ’});

%

% **

% MAT 135 FALL MODELING

% **

%

YGD_A = getYearGradeData(data ,‘Fall ’, ‘MAT135 ’,

74

statisticsFallStartTimes ,‘A’,Years);

YGD_B = getYearGradeData(data ,‘Fall ’, ‘MAT135 ’,

statisticsFallStartTimes ,‘B’,Years);

YGD_C = getYearGradeData(data ,‘Fall ’, ‘MAT135 ’,

statisticsFallStartTimes ,‘C’,Years);

YGD_D = getYearGradeData(data ,‘Fall ’, ‘MAT135 ’,

statisticsFallStartTimes ,‘D’,Years);

YGD_EW = getYearGradeData(data ,‘Fall ’, ‘MAT135 ’,

statisticsFallStartTimes ,‘EW ’,Years);

%

CSTD_A = getCumulativeStartTimeData(data ,‘Fall ’, ‘MAT135 ’,

statisticsFallStartTimes ,‘A’);

CSTD_B = getCumulativeStartTimeData(data ,‘Fall ’, ‘MAT135 ’,

statisticsFallStartTimes ,‘B’);

CSTD_C = getCumulativeStartTimeData(data ,‘Fall ’, ‘MAT135 ’,

statisticsFallStartTimes ,‘C’);

CSTD_D = getCumulativeStartTimeData(data ,‘Fall ’, ‘MAT135 ’,

statisticsFallStartTimes ,‘D’);

CSTD_EW = getCumulativeStartTimeData(data ,‘Fall ’, ‘MAT135 ’,

statisticsFallStartTimes ,‘EW ’);

% [NT_A, NT_B, NT_C, NT_D, NT_EW] =

getAllNonTraditionalCumulativeStartTimeData(data ,‘Fall ’, ‘

MAT135 ’,statisticsFallNonTraditionalStartTimes);

%

%

% looking at Grades A, B, & C plots suggest that we have

period from 4 to 10 years after 2003

%

m = length(YGD_A);

xx = linspace (0,2*pi ,m+1);

x = -4*pi/3:pi/3:12*pi/3; %linspace(-4*pi/3,11*pi/3,m+1);

figure

plot(x(1:end -1),YGD_A,‘ro ’,x(1:end -1),YGD_B,‘b+’,x(1:end -1),

YGD_C,‘gd’,x(1:end -1),YGD_D,‘cs ’,‘LineWidth ’,2)

ylabel(‘Proportion of Students ’)

xlabel(‘T years after 2003 ’)

title(‘MAT135 Fall Semester - cycle assumed from T = 4 to 10’)

legend(‘A’,‘B’,‘C’,‘D’,‘EW ’)

xticks ([-4*pi/3 -2*pi/3 0 2*pi/3 4*pi/3 6*pi/3 8*pi/3 10*pi/

3 12*pi/3])

xticklabels ({‘0’, ‘2’, ‘4’, ‘6’, ‘8’, ‘10’, ‘12’, ‘14’})

% xlim ([0 2*pi+pi/6])

hold on

% %

% % plot Non Traditional data

75

% %

% plot(x(end),NT_A, ‘ko’, x(end),NT_B, ‘k+’, x(end),NT_C, ‘kd

’, x(end),NT_D, ‘ks’, ‘LineWidth ’,2)

% %

% % compute the interpolating polynomial

% %

NumInt = 200;

xY_int = linspace(-4*pi/3,11*pi/3,NumInt);

[pxYA , pyYA] = computeTrigonometricInterpolation(YGD_A(5:10) ,

xY_int);

[pxYB , pyYB] = computeTrigonometricInterpolation(YGD_B(5:10) ,

xY_int);

[pxYC , pyYC] = computeTrigonometricInterpolation(YGD_C(5:10) ,

xY_int);

[pxYD , pyYD] = computeTrigonometricInterpolation(YGD_D(5:10) ,

xY_int);

xST_int = linspace(-pi/2,2*pi+pi/2,NumInt);

[pxCSTDA , pyCSTDA] = computeTrigonometricInterpolation(CSTD_A,

xST_int);

[pxCSTDB , pyCSTDB] = computeTrigonometricInterpolation(CSTD_B,

xST_int);

[pxCSTDC , pyCSTDC] = computeTrigonometricInterpolation(CSTD_C,

xST_int);

[pxCSTDD , pyCSTDD] = computeTrigonometricInterpolation(CSTD_D,

xST_int);

[pxCSTDEW , pyCSTDEW] = computeTrigonometricInterpolation(CSTD_

EW,xST_int);

plot(pxYA ,pyYA , ‘r.’,pxYB ,pyYB , ‘b:’,pxYC ,pyYC , ‘g--’,pxYD ,

pyYD , ‘c-.’,’LineWidth ’ ,2)

%

figure

[X, Y] = meshgrid(xY_int ,xST_int);

zA = flip(pyYA)’.* flip(pyCSTDA);

surf(X, Y, zA)

title(‘MAT135 FALL - Grade A’)

zlabel(‘Proportion of students ’)

xlabel(‘Years since 2003 ’)

ylabel(‘Hours after 9:30 AM ’)

xticks ([-4*pi/3 -2*pi/3 0 2*pi/3 4*pi/3 6*pi/3 8*pi/3 10*pi/3

12*pi/3])

xticklabels ({‘0’, ‘2’, ‘4’, ‘6’, ‘8’, ‘10’, ‘12’, ‘14’})

yticks ([0 2*pi/5 4*pi/5 6*pi/5 8*pi/5 2*pi 12*pi/5])

yticklabels ({‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’})

clear;

clc;

close all;

76

statisticsFallStartTimes = {‘9:30’, ‘10:30’, ‘11:30’,

‘12:30’,‘13:30’};

statisticsFallNonTraditionalStartTimes = { ‘14:30 ’};

%

statisticsSpringStartTimes = {‘8:30’,‘9:30’, ‘10:30’, ‘11:30’,

‘12:30’,‘13:30’};

statisticsSpringNonTraditionalStartTimes = { ‘8:00’};

%

calculusFallStartTimes = {‘8:30’,‘9:30’, ‘10:30’, ‘11:30’,

‘12:30’};

calculusFallNonTraditionalStartTimes = {‘8:00 ’};

%

calculusSpringStartTimes ={‘9:30’, ‘10:30’, ‘11:30’, ‘12:30 ’};

Years = [0, 1, 2, 3,4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15];

%

% Error Matrix: [MAT135F MAT135S MAT250F MAT250S]’ X [A B C

D EW]

%

ErrorMatrix = zeros (4,5);

%

% Examination of data give an appearance of data cycling every

six years with a cycle [4,5,6,7,8,9,10]

%

T = readtable(‘Grades.csv ’);

data = T(:,{‘Semester ’,’Size’,’StartTime ’,’Day’,’Class’,’

YrSince2003 ’,’Freq’,’Grade ’});

%

% **

% MAT 135 FALL MODELING

% **

%

YGD_A = getYearGradeData(data ,‘Fall ’, ‘MAT135 ’,

statisticsFallStartTimes ,‘A’,Years);

YGD_B = getYearGradeData(data ,‘Fall ’, ‘MAT135 ’,

statisticsFallStartTimes ,‘B’,Years);

YGD_C = getYearGradeData(data ,‘Fall ’, ‘MAT135 ’,

statisticsFallStartTimes ,‘C’,Years);

YGD_D = getYearGradeData(data ,‘Fall ’, ‘MAT135 ’,

statisticsFallStartTimes ,‘D’,Years);

YGD_EW = getYearGradeData(data ,‘Fall ’, ‘MAT135 ’,

statisticsFallStartTimes ,‘EW ’,Years);

m = length(YGD_A);

%x = -4*pi/3:pi/3:12*pi/3; %

77

x = linspace(-4*pi/3,12*pi/3,m+1);

figure

% plot(x(1:end -1),YGD_A,‘ro’,x(1:end -1),YGD_B,‘b+’,x(1:end -1),

YGD_C,‘gd ’,x(1:end -1),YGD_D,‘cs ’,‘LineWidth ’,2)

plot(x(1:end -1),YGD_A,‘ro ’,x(1:end -1),YGD_B,‘b+’,x(1:end -1),

YGD_C,‘gd’,x(1:end -1),YGD_D,‘cs ’,x(1:end -1),YGD_EW ,‘m+’,‘

LineWidth ’ ,2)

ylabel(‘Proportion of Students ’)

xlabel(‘T years after 2003 ’)

title(‘MAT135 Fall Semester - cycle assumed from T = 4 to 10’)

legend(‘A’,’B’,’C’,’D’,’EW’)

xticks ([-4*pi/3 -2*pi/3 0 2*pi/3 4*pi/3 6*pi/3 8*pi/3 10*pi/3

12*pi/3])

xticklabels ({‘0’, ‘2’, ‘4’, ‘6’, ‘8’, ‘10’, ‘12’, ‘14’})

hold on

% %

% % compute the interpolating polynomial

% %

NumInt = 200;

x_int = linspace(-4*pi/3,11*pi/3,NumInt);

[pxA , pyA , pyAerror] = computeTrigonometricInterpolationError(

YGD_A(5:10) ,x_int ,x(1:end -1),YGD_A);

[pxB , pyB , pyBerror] = computeTrigonometricInterpolationError(

YGD_B(5:10) ,x_int ,x(1:end -1),YGD_B);

[pxC , pyC , pyCerror] = computeTrigonometricInterpolationError(

YGD_C(5:10) ,x_int ,x(1:end -1),YGD_C);

[pxD , pyD , pyDerror] = computeTrigonometricInterpolationError(

YGD_D(5:10) ,x_int ,x(1:end -1),YGD_D);

[pxEW , pyEW , pyEWerror] =

computeTrigonometricInterpolationError(YGD_EW (5:10) ,x_int ,x

(1:end -1),YGD_EW);

ErrorMatrix (1,:)= [pyAerror , pyBerror , pyCerror , pyDerror ,

pyEWerror];

% plot(pxA ,pyA , ‘r.’,pxB ,pyB , ‘b:’,pxC ,pyC , ‘g--’,pxD ,pyD , ‘c

-.’,‘LineWidth ’,2)

plot(pxA ,pyA , ‘r.’,pxB ,pyB , ‘b:’,pxC ,pyC , ‘g--’,pxD ,pyD , ‘c

-.’,pxEW ,pyEW , ‘m-.’,‘LineWidth ’,2)

% %

% % **

% % MAT 135 SPRING MODELING

% % **

78

% %

YGD_A = getYearGradeData(data ,‘Spring ’, ‘MAT135 ’,

statisticsFallStartTimes ,‘A’,Years);

YGD_B = getYearGradeData(data ,‘Spring ’, ‘MAT135 ’,

statisticsFallStartTimes ,‘B’,Years);

YGD_C = getYearGradeData(data ,‘Spring ’, ‘MAT135 ’,

statisticsFallStartTimes ,‘C’,Years);

YGD_D = getYearGradeData(data ,‘Spring ’, ‘MAT135 ’,

statisticsFallStartTimes ,‘D’,Years);

YGD_EW = getYearGradeData(data ,‘Spring ’, ‘MAT135 ’,

statisticsFallStartTimes ,‘EW ’,Years);

figure

% plot(x(1:end -1),YGD_A,‘ro’,x(1:end -1),YGD_B,‘b+’,x(1:end -1),

YGD_C,‘gd ’,x(1:end -1),YGD_D,‘cs ’,‘LineWidth ’,2)

plot(x(1:end -1),YGD_A,‘ro ’,x(1:end -1),YGD_B,‘b+’,x(1:end -1),

YGD_C,‘gd’,x(1:end -1),YGD_D,‘cs ’,x(1:end -1),YGD_EW ,‘m+’,‘

LineWidth ’ ,2)

ylabel(‘Proportion of Students ’)

xlabel(‘T years after 2003 ’)

title(‘MAT135 Spring Semester - cycle assumed from T = 4 to

10’)

legend(‘A’,‘B’,‘C’,‘D’,‘EW ’)

xticks ([-4*pi/3 -2*pi/3 0 2*pi/3 4*pi/3 6*pi/3 8*pi/3 10*pi/

3 12*pi/3])

xticklabels ({‘0’, ‘2’, ‘4’, ‘6’, ‘8’, ‘10’, ‘12’, ‘14’})

hold on

%

% compute the interpolating polynomial

%

[pxA , pyA , pyAerror] = computeTrigonometricInterpolationError(

YGD_A(5:10) ,x_int ,x(1:end -1),YGD_A);

[pxB , pyB , pyBerror] = computeTrigonometricInterpolationError(

YGD_B(5:10) ,x_int ,x(1:end -1),YGD_B);

[pxC , pyC , pyCerror] = computeTrigonometricInterpolationError(

YGD_C(5:10) ,x_int ,x(1:end -1),YGD_C);

[pxD , pyD , pyDerror] = computeTrigonometricInterpolationError(

YGD_D(5:10) ,x_int ,x(1:end -1),YGD_D);

[pxEW , pyEW , pyEWerror] =

computeTrigonometricInterpolationError(YGD_EW (5:10) ,x_int ,x

(1:end -1),YGD_EW);

ErrorMatrix (2,:)= [pyAerror , pyBerror , pyCerror , pyDerror ,

pyEWerror];

79

% plot(pxA ,pyA , ‘r.’,pxB ,pyB , ‘b:’,pxC ,pyC , ‘g--’,pxD ,pyD , ‘c

-.’,‘LineWidth ’,2)

plot(pxA ,pyA , ‘r.’,pxB ,pyB , ‘b:’,pxC ,pyC , ‘g--’,pxD ,pyD , ‘c

-.’,pxEW ,pyEW , ‘m-.’,‘LineWidth ’,2)

%

% **

% MAT 250 SPRING MODELING

% **

%

YGD_A = getYearGradeData(data ,‘Spring ’, ‘MAT250 ’,

statisticsFallStartTimes ,‘A’,Years);

YGD_B = getYearGradeData(data ,‘Spring ’, ‘MAT250 ’,

statisticsFallStartTimes ,‘B’,Years);

YGD_C = getYearGradeData(data ,‘Spring ’, ‘MAT250 ’,

statisticsFallStartTimes ,‘C’,Years);

YGD_D = getYearGradeData(data ,‘Spring ’, ‘MAT250 ’,

statisticsFallStartTimes ,‘D’,Years);

YGD_EW = getYearGradeData(data ,‘Spring ’, ‘MAT250 ’,

statisticsFallStartTimes ,‘EW ’,Years);

figure

% plot(x(1:end -1),YGD_A,‘ro’,x(1:end -1),YGD_B,‘b+’,x(1:end -1),

YGD_C,‘gd ’,x(1:end -1),YGD_D,‘cs ’,‘LineWidth ’,2)

plot(x(1:end -1),YGD_A,‘ro ’,x(1:end -1),YGD_B,‘b+’,x(1:end -1),

YGD_C,‘gd’,x(1:end -1),YGD_D,‘cs ’,x(1:end -1),YGD_EW ,‘m+’,‘

LineWidth ’ ,2)

ylabel(‘Proportion of Students ’)

xlabel(‘T years after 2003 ’)

title(‘MAT250 Spring Semester - cycle assumed from T = 4 to

10’)

legend(‘A’,‘B’,‘C’,‘D’,‘EW ’)

xticks ([-4*pi/3 -2*pi/3 0 2*pi/3 4*pi/3 6*pi/3 8*pi/3 10*pi/

3 12*pi/3])

xticklabels ({‘0’, ‘2’, ‘4’, ‘6’, ‘8’, ‘10’, ‘12’, ‘14’})

hold on

% compute the interpolating polynomial

%

[pxA , pyA , pyAerror] = computeTrigonometricInterpolationError(

80

YGD_A(5:10) ,x_int ,x(1:end -1),YGD_A);

[pxB , pyB , pyBerror] = computeTrigonometricInterpolationError(

YGD_B(5:10) ,x_int ,x(1:end -1),YGD_B);

[pxC , pyC , pyCerror] = computeTrigonometricInterpolationError(

YGD_C(5:10) ,x_int ,x(1:end -1),YGD_C);

[pxD , pyD , pyDerror] = computeTrigonometricInterpolationError(

YGD_D(5:10) ,x_int ,x(1:end -1),YGD_D);

[pxEW , pyEW , pyEWerror] =

computeTrigonometricInterpolationError(YGD_EW (5:10) ,x_int ,x

(1:end -1),YGD_EW);

ErrorMatrix (4,:)= [pyAerror , pyBerror , pyCerror , pyDerror ,

pyEWerror];

% plot(pxA ,pyA , ‘r.’,pxB ,pyB , ‘b:’,pxC ,pyC , ‘g--’,pxD ,pyD , ‘c

-.’,‘LineWidth ’,2)

plot(pxA ,pyA , ‘r.’,pxB ,pyB , ‘b:’,pxC ,pyC , ‘g--’,pxD ,pyD , ‘c

-.’,pxEW ,pyEW , ‘m-.’,‘LineWidth ’,2)

%

% **

% MAT 250 FALL MODELING

% **

%

YGD_A = getYearGradeData(data ,‘Fall ’, ‘MAT250 ’,

statisticsFallStartTimes ,‘A’,Years);

YGD_B = getYearGradeData(data ,‘Fall ’, ‘MAT250 ’,

statisticsFallStartTimes ,‘B’,Years);

YGD_C = getYearGradeData(data ,‘Fall ’, ‘MAT250 ’,

statisticsFallStartTimes ,‘C’,Years);

YGD_D = getYearGradeData(data ,‘Fall ’, ‘MAT250 ’,

statisticsFallStartTimes ,‘D’,Years);

YGD_EW = getYearGradeData(data ,‘Fall ’, ‘MAT250 ’,

statisticsFallStartTimes ,‘EW ’,Years);

figure

% plot(x(1:end -1),YGD_A,‘ro’,x(1:end -1),YGD_B,‘b+’,x(1:end -1),

YGD_C,‘gd ’,x(1:end -1),YGD_D,‘cs ’,‘LineWidth ’,2)

plot(x(1:end -1),YGD_A,‘ro ’,x(1:end -1),YGD_B,‘b+’,x(1:end -1),

YGD_C,‘gd’,x(1:end -1),YGD_D,‘cs ’,x(1:end -1),YGD_EW ,‘m+’,‘

LineWidth ’ ,2)

ylabel(‘Proportion of Students ’)

xlabel(‘T years after 2003 ’)

title(‘MAT250 Fall Semester - cycle assumed from T = 4 to 10’)

81

legend(‘A’,‘B’,‘C’,‘D’,‘EW ’)

xticks ([-4*pi/3 -2*pi/3 0 2*pi/3 4*pi/3 6*pi/3 8*pi/3 10*pi/

3 12*pi/3])

xticklabels ({‘0’, ‘2’, ‘4’, ‘6’, ‘8’, ‘10’, ‘12’, ‘14’})

hold on

%

% compute the interpolating polynomial

%

[pxA , pyA , pyAerror] = computeTrigonometricInterpolationError(

YGD_A(5:10) ,x_int ,x(1:end -1),YGD_A);

[pxB , pyB , pyBerror] = computeTrigonometricInterpolationError(

YGD_B(5:10) ,x_int ,x(1:end -1),YGD_B);

[pxC , pyC , pyCerror] = computeTrigonometricInterpolationError(

YGD_C(5:10) ,x_int ,x(1:end -1),YGD_C);

[pxD , pyD , pyDerror] = computeTrigonometricInterpolationError(

YGD_D(5:10) ,x_int ,x(1:end -1),YGD_D);

[pxEW , pyEW , pyEWerror] =

computeTrigonometricInterpolationError(YGD_EW (5:10) ,x_int ,x

(1:end -1),YGD_EW);

ErrorMatrix (3,:)= [pyAerror , pyBerror , pyCerror , pyDerror ,

pyEWerror];

% plot(pxA ,pyA , ‘r.’,pxB ,pyB , ‘b:’,pxC ,pyC , ‘g--’,pxD ,pyD , ‘c

-.’,‘LineWidth ’,2)

plot(pxA ,pyA , ‘r.’,pxB ,pyB , ‘b:’,pxC ,pyC , ‘g--’,pxD ,pyD , ‘c

-.’,pxEW ,pyEW , ‘m-.’,‘LineWidth ’,2)

References

[1] Breiman, L. (2001). Statistical modeling: the two cultures. Statistical Science,
16(3), 199-231. Retrieved from https://projecteuclid.org/download/pdf_

1/euclid.ss/1009213726

[2] Fox, J., & Weisberg, S. (2011). An R companion to applied regression: Second
edition. Thousand Oaks, CA: SAGE.

[3] Mishra, A. (2018, February 24). Metrics to evaluate your machine
learning algorithm. Retrieved from https://towardsdatascience.com/

metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234

[4] Loss Functions (n.d.). Retrieved from https://ml-cheatsheet.readthedocs.

io/en/latest/loss_functions.html

[5] Collier, A. B. (2015, December 14). Making sense of logarithmic
loss. Retrieved from https://datawookie.netlify.com/blog/2015/12/

making-sense-of-logarithmic-loss/

[6] Zammito, F. (2019). What’s considered a good log loss in mach-
ing learning? Retrieved from https://medium.com/@fzammito/

whats-considered-a-good-log-loss-in-machine-learning-a529d400632d

[7] Irizarry, R. A. (2020, February 24). Introduction to data science: Data analysis
and prediction algorithms with R. CRC Press

[8] James, G., Witten, D., Hastie, T., & Tibshirani, R. (2017). An introduction to
statistical learning: With application in R. Springer

[9] Efron, B. & Hastie, T (2016). Computer age statistical inference. Cambridge
University Press. Retrieved from https://we.stanford.edu/~hastie/CAST/

[10] Murphy, K. P. (2012). Machine learning a probabilistic perspective. Cambridge,
MA: MIT Press.

[11] Kuhn, M., Contributions from Wing J., Weston S., Williams A., Keefer C.,
Engelhardt A., Cooper T., Mayer Z., Kenkel B., Benesty M., Lescarbeau R., Ziem
A., Scrucca L., Tang Y., Candan C., Hunt T., & the R Core Team (2019). caret:

82

https://projecteuclid.org/download/pdf_1/euclid.ss/1009213726
https://projecteuclid.org/download/pdf_1/euclid.ss/1009213726
https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234
https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234
https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html
https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html
https://datawookie.netlify.com/blog/2015/12/making-sense-of-logarithmic-loss/
https://datawookie.netlify.com/blog/2015/12/making-sense-of-logarithmic-loss/
https://medium.com/@fzammito/whats-considered-a-good-log-loss-in-machine-learning-a529d400632d
https://medium.com/@fzammito/whats-considered-a-good-log-loss-in-machine-learning-a529d400632d
https://we.stanford.edu/~hastie/CAST/

REFERENCES 83

Classification and Regression Training. R package version 6.0-84. Retrieved from
https://CRAN.R-project.org/package=caret

[12] Therneau T., & Atkinson B. (2019). rpart: Recursive Partitioning and Regression
Trees. R package version 4.1-15. Retrieved from https://CRAN.R-project.org/

package=rpart

[13] Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The elements of statistical
learning: Data mining, inference, and prediction: Second Edition. Springer.

[14] Fox, J. (2008). Applied regression analysis and generalized linear models: Second
edition. Thousand Oaks, CA: SAGE

[15] Yee, T., W. (2010). The VGAM Package for Categorical Data Analysis. Journal
of Statistical Software, 32(10), 1-34. Retrieved from http://www.jstatsoft.

org/v32/i10/.

[16] Hornung, R. (2019). ordinalForest: Ordinal Forests: Prediction and Variable
Ranking with Ordinal Target Variables. R package version 2.3-1. Retrieved from
https://CRAN.R-project.org/package=ordinalForest

[17] Ordinal logistic regression (n.d). UCLA. Retrieved March 8, 2020, from https:

//stats.idre.ucla.edu/r/dae/ordinal-logistic-regression/

[18] How do I interprete the coefficients in an ordinal logistic regression in R? (n.d).
UCLA. Retrieved March 8, 2020, from https://stats.idre.ucla.edu/r/faq/

ologit-coefficients/

[19] Venables, W. N., & Ripley, B. D. (2002). MASS: Modern Applied Statistics
with S: Fourth Edition. New York, Spring. ISBN 0-387-95457-0 Retrieved from
http://www.stats.ox.ac.uk/pub/MASS4

[20] Hunt, T. (2020). ModelMetrics: Rapid Calculation of Model Metrics. R pack-
age version 1.2.2.1. Retrieved from https://CRAN.R-project.org/package=

ModelMetrics

[21] Yee, T. W. (2010). The VGAM Package for Categorical Data Analysis. Journal
of Statistical Software, 32(10), 1-34. Retrieved from https://www.jstatsoft.

org/article/view/v032i10

[22] Yee, T. W., & Hastie, T. J. (2003). Reduced-rank vector generalized linear mod-
els. Statistical Modelling: An international journal, 3(1), 15-41.

[23] Wright, M. N., & Ziegler, A. (2017). ranger: A Fast Implementation of Random
Forests for High Dimensional Data in C++ and R. Journal of Statistical Software,
77(1), 1-17. doi:10.18637/jss.v077.i01

[24] Faires, J. D., & Burden, R. (2003). Numerical methods: Third edition. Brooks/-
Cole.

https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=rpart
https://CRAN.R-project.org/package=rpart
http://www.jstatsoft.org/v32/i10/.
http://www.jstatsoft.org/v32/i10/.
https://CRAN.R-project.org/package=ordinalForest
https://stats.idre.ucla.edu/r/dae/ordinal-logistic-regression/
https://stats.idre.ucla.edu/r/dae/ordinal-logistic-regression/
https://stats.idre.ucla.edu/r/faq/ologit-coefficients/
https://stats.idre.ucla.edu/r/faq/ologit-coefficients/
http://www.stats.ox.ac.uk/pub/MASS4
https://CRAN.R-project.org/package=ModelMetrics
https://CRAN.R-project.org/package=ModelMetrics
https://www.jstatsoft.org/article/view/v032i10
https://www.jstatsoft.org/article/view/v032i10
doi:10.18637/jss.v077.i01

	Evaluating an Ordinal Output using Data Modeling, Algorithmic Modeling, and Numerical Analysis
	Recommended Citation

	1 Introduction
	2 Training and Testing
	2.1 Logarithmic Loss
	2.2 K-Fold Cross Validation
	2.3 Training with the caret Package
	2.3.1 Cross Validation for POLR
	2.3.2 Cross Validation for the Vector Generalized Linear Model
	2.3.3 Cross Validation for CART
	2.3.4 Cross Validation for Random Forests

	3 Proportional-Odds Logistic Regression
	3.1 Implementing POLR in R
	3.2 Prediction and logLoss for POLR

	4 Vector Generalized Linear Model
	4.1 Implementing VGLM in R
	4.2 Prediction and logLoss for VGLM

	5 Classification and Regression Tree Model
	5.1 Implementing CART in R
	5.2 Prediction and logLoss for CART

	6 Random Forests Model
	6.1 Implementing Random Forests in R
	6.2 Prediction and logLoss for Random Forests

	7 Trigonometric Functions and Fourier Series
	7.1 Implementing Trigonometric Functions in MATLAB for the Start Times
	7.2 Implementing Trigonometric Functions in MATLAB for the Years Since 2003

	8 Comparing the Models
	Appendices
	A R Code for Training and Testing
	A.1 Data Set Up
	A.2 Training the Models Code

	B R Code for POLR
	C R Code for VGLM
	D R Code for CART
	E R Code for Random Forests
	F MATLAB Code for Trigonometric Polynomials

