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Abstract

There exist multiple types of geometry, differing in the postulates they are based

on, and therefore the theorems and proofs that make up said geometry. Hyperbolic

geometry differs from others by allowing there to exist multiple lines through a single

point not on a given line, that are parallel to the given line. Every geometry has the idea

of distance and isometries, distance preserving maps. By considering special collections

of isometries called discrete groups, we can construct interesting surfaces, such as the

torus and genus-g surface. The connection between the surface and the discrete group

can be understood through the fundamental polygon, a polygon whose images by the

isometries properly cover the plane R2 or hyperbolic space D2. While there are a

number of ways to construct a fundamental polygon, we numerically investigate the

behavior of images of a line by the group of hyperbolic isometries to see if they can be

used to construct a fundamental polygon.
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1 Euclidean Geometry

Euclid of Alexandria, Egypt (300 BC), is one of the most famous mathematicians of all

time, known for organizing ideas of geometry and founding the axiomatic method, putting

mathematics on a firm logical foundation. Euclid taught in Alexandria, Egypt, where many

mathematical ideas were initiated, discovered, or discussed. Through involvement in these

discussions, Euclid compiled these ideas, theorems, etc., and put them into a collection of

works named “The Elements”. In this book, Euclid laid out definitions and terms that were

to be taken without proof, and which formed the basis of geometry. Euclidean geometry was

originally based on 5 postulates, or statements that are to be taken without proof. From

these 5 postulates, all theorems and proofs can be developed. Such a logical progression of

ideas remains in use to this day.

Many fundamental ideas form the basis of Euclidean geometry. We consider the Euclidean

plane to be the following set: R2 = {(x, y)|x, y ∈ R}, where we define the distance function

between two points P1 = (x1, y1) and P2 = (x2, y2) as

d(P1, P2) =
√

(x1 − x2)2 + (y2 − y1)2

.

If two points are equally distant from a third point, we say they are equidistant (Figure

1).

We can then define a line to be the set of points equidistant from two points. For example,

in Figure 1, all points on line L are equidistant from A and B because they are equal distance

away from points A and B. The idea of distance allows us to build the idea of isometries,

which are distance-persevering maps or functions.

In Euclidean geometry, an isometry of R2 is defined as a function

f : R2 → R2 where d(f(P1), f(P2)) = d(P1, P2) for all P1, P2 ∈ R2

1



Figure 1: Example of equidistant points

Figure 2: Example of a translation

. Therefore, an isometry preserves the distance between points before and after getting

mapped by the isometry.

Euclidean Geometry has 4 types of isometries: translations, reflections, glide reflections,

and rotations[4].

A translation moves all points by the same vector. In generic form, we write a translation

as t(α,β) where (α, β) ∈ R2 and a point (x, y) is sent to a point (x′, y′), where x′ = α + x

and y′ = β + y. For example, in Figure 2 the orange triangle is translated by a vector to

obtain the blue triangle. A translation has no fixed points, however, it has a parallel family

of invariant lines (lines that are mapped onto themselves by the isometry), parallel to the

2



Figure 3: Reflection in the x-axis

vector of translation[4].

A reflection mirrors points over a set line. This leaves the points on the line of reflection

as fixed points. The most basic example of a reflection is one over the x-axis, where a point

(x, y) is sent to point (x′, y′), where x′ = x and y′ = −y (Figure 3). We write a reflection as

r̄.

A rotation rotates points by a specific angle around a specific point, referred to as the

center of rotation (Figure 4). This leaves the center of rotation as the only fixed point. We

use rθ to represent a rotation, where θ=the angle of rotation. For a rotation by angle θ

around the origin, a point (x, y) is sent to a point (x′, y′) where x′ = x cos θ − y sin θ and

y′ = x sin θ + y cos θ.

Finally, a glide reflection is a combination of a translation and a reflection (Figure 5). It

reflects a point over a line of reflection and then translates it by a vector parallel to the line.

We write it as t(α,β)r̄, or as r̄t(α,β), depending on which isometry is performed first. It is to

be noted that when writing a composite of isometries, they are to be done/read from right

to left. We note that t(α,β)r̄ = r̄t(α,β).

One can see that every isometry of R2 is one of these four by using the “three reflections

3



Figure 4: Example of a rotation by 90◦

Figure 5: Translation followed by a reflection (also known as a glide reflection

4



theorem”[4]. The three reflections theorem states that any isometry f of R2 is the product of

one, two, or three reflections. The reason for this theorem is that any isometry is determined

by its effect on three points, that is any isometry f of R2 is determined by the images f(A),

f(B), and f(C) of three points A, B, and C not on a line[4]. Because every composite of three

reflections is an isometry of one of the four types listed, it follows that any isometry of R2 is

one of the four types.

It is easy to see that the orientation-preserving isometries will be the product of two re-

flections (rotations and translations) and the orientation-reversing isometries are the product

of one or three reflections (reflections and glide reflections)[4].

Because complex numbers can be identified with points in R2, each isometry also has a

complex form, which can be very useful when computing certain algebraic expressions with

the isometries. First, we denote z = x + iy, where x, y ∈ R and i ∈ C. We view the points

(x, y) ∈ R2 as z = x+ iy ∈ C. The following are the formulas for each isometry in complex

form:

t(α,β) becomes t(α+iβ)(z) = α + iβ + z, rθ becomes rθ(z) = eiθz

r̄ becomes r̄(z) = z̄, t(α,β)r̄ becomes f(z) = α + iβ + z̄

Algebraically, many of the proofs and computations become much easier in complex form.

While the above formulas represent several basic isometries, to get rotations around gen-

eral points or reflections in general lines, we use conjugation. The conjugate of an isometry

g by an isometry f is the isometry fgf−1. The idea of conjugation is performing the same

action but at a different place, or expressing an operation in a new coordinate system[4]. For

example, t(α,β)rθt
−1
(α,β) translates by the inverse of the translation t(α,β), performs the rotation,

and then translates the set of points back using a translation. The result is a rotation by θ

around point (α, β). We can now have rotations around a center beside the origin, reflections

over other lines besides the x-axis, etc.

5



2 The Torus and Groups

A group G is defined as a set with an operation · (for a, b ∈ G, a · b is some element of G

that satisfies the following constraints [2]:

1) The operation must be associative: for every a, b, c ∈ G, a · (b · c) = (a · b) · c.

2) The group G must have a unit element: there exists an element e ∈ G such that for

every a ∈ G, e · a = a · e = a.

3) There must exist an inverse element: for every a ∈ G, there is an element b ∈ G such

that a · b = b · a = e (the unit element).

A simple example of a group would be the set of integers Z, with the operation being

addition. We can denote this as (Z,+). For all integers a, b, and c, (a+b)+c=a+(b+c)

holds, so the associative property is satisfied. 0 is the unit element, as any integer a has the

property that a+0=a and 0+a=a. Also for every integer a, there exists an integer b such

that a+b=0, where b is simply the opposite of a. Therefore, the set (Z,+) satisfies all the

properties of a group.

Specifically, in the scope of geometry, we consider a group G of isometries where the

operation is a composition and elements satisfy that the composite of any two elements is

in G, and the inverse of any element of G is in G. Take, for example, the group G consisting

of translations by integer values in the direction of the x-axis, tm(z) = z + m. First, the

operation is composition and it is easy to see that tm◦tn = tm+n. If we take somem,n, o ∈ Z,

we get that tm ◦ (tn ◦ to) = (tm ◦ tn) ◦ to, as both respectively equal tn+(m+o) and t(n+m)+o,

which are equal. Therefore, the associative property is satisfied. The unit element is t0, as

tm+ t0 = t0+ tm = tm. Also, we know t−1
m = t−m, so the inverse of each element of the group

is in the group. All conditions of the group are satisfied, making G a group. The group G

is isomorphic to the example above of the group (Z,+) which means that the groups are

essentially the same.

We define the orbit of x ∈ R2 under a group of isometries Γ to be images of x under

all elements of Γ = {g(x) | g ∈ Γ}[4]. We can also denote this as Γx. For example, let

6



Figure 6: Fundamental polygon of a cylinder with horizontal translations

Γ be the group of horizontal integer translations of R2. The Γ-orbit of a point is the set

{(x + n, y) | n ∈ Z}. Next, we will form the quotient space R2/Γ. For every x ∈ R2, we

will treat its orbit Γx as a single point. Then the quotient space R2/Γ is the set of orbits,

where each orbit is thought of as one element. To understand R2/Γ better, consider a part of

the plane that contains exactly one representative of each Γ-orbit, called a fundamental set.

In the above example, the fundamental set is [0,1)xR. A fundamental set is in a bijective

correspondence with the quotient space but does not capture the topology of the quotient

space. For this, we use the fundamental polygon, a polygon that contains a representative

of each Γ-orbit, possibly more than one, but finitely many.

In our above example, [0,1]xR is an example of a fundamental polygon (Figure 6). Images

of this set by all elements of Γ cover the entire plane with overlaps only on the boundary[4].

As another example, a torus can also be formed using a quotient space. We consider the

group Γ = {tm−→e1+n−→e2} where m,n ∈ Z and −→e1 and −→e2 are basis vectors in R2. As stated

above, we would like to find a fundamental polygon to better understand R2/Γ.

The fundamental polygon can be the square [0,1] x [0,1] (Figure 7).

This group moves this square around the whole plane and all translates will overlap only

7



Figure 7: Fundamental region of a torus

Figure 8: Process of forming a torus from the fundamental polygon

8



Figure 9: Fundamental polygon of Klein bottle

at the boundary. If we solely look at this square, we see that we can identify the sides

because the points on them are in the same orbit. For example, if we take a point Q on the

left side of the square and translate it by −→e1 , we get the point Q on the right side of the

square in the same orbit. Therefore, we can identify these sides as they are essentially the

same points, which forms a cylinder. Next, we notice that the same can be done with the

top and the bottom of the cylinder: if we look back at the original square and take a point

Q on the bottom and translate it up by −→e2 , we get the same point Q on the top. Therefore,

we can identify the top of the cylinder with the bottom (Figure 8).

Other notable spaces can be made using this same process of finding a fundamental

polyhedron, such as the Mobius strip and the Klein bottle (Figures 9 and 10). A Mobius

strip is formed by Γ = {gm | m ∈ Z}, where g = r̄ ◦ t. A Klein bottle is formed by

Γ =< S, t−→e2 >, where S represents a glide reflection in the x-axis and is shifted by −→e1 . An

example of a fundamental polygon for the Mobius strip is [0,1]xR, and [0,1]x[0,1] for the

Klein bottle.

A group Γ can have various fundamental polygons. Often they can be intuitively con-

structed based on our understanding of the group. Here is another way: for example, let

9



Figure 10: Fundamental polygon of Mobius strip

G be generated by the translations te1 and te2 , where e1 and e2 are the standard basis for

R2. If we take the translates of a line, we get a collection of parallel lines. If the line has a

rational slope, we get equally spaced parallel lines.

However, if the line has an irrational slope, say
√
2, then we get a dense collection of

parallel lines (Figure 11). The term “dense” means that lines become arbitrarily close to

each point of R2 and fill the plane. The density makes them unsuitable for a fundamental

polygon. By using two lines with different rational slopes, we get a grid on the plane

and can use several pieces of the grid as a fundamental ploygon[4] (Figure 12). We can

take lines with rational slopes, for example, 3
4
and 1

2
, and translate them by all possible

translations and we get a picture in which we can find a fundamental polygon for Γ. We

also note that distance in R2/Γ is defined using distance in R2. More specifically, we can

say d(ΓP,ΓQ) = min{d(P ′, Q′)|P ′ ∈ ΓP,Q′ ∈ ΓQ}. The orbit map is the map that sends

each P ∈ R2 to its orbit ΓP ∈ R2/Γ and is also denoted as Γ∗, it is a local isometry from

the Euclidean plane. Γ∗ is a local isometry where within a certain distance, the geometry of

10



Figure 11: Translates of line with slope
√
2

Figure 12: Translations of two lines with rational slope, forming a grid
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Figure 13: Example of parallel postulate: Point P is not on the line m, and n is the only
line going through point P parallel to line m

the quotient space is the same as the geometry of the plane.

Importantly, the kinds of groups we consider are discrete. A discrete group of isometries

G is a group of isometries with the additional property of having no limit points[4]. More

precisely, we define the term limit point of a subset S of R2: x is a limit point of S if every

disk around x contains an s ∈ S such that s ̸= x. We say Γ is discrete if no point P ∈ R2

is a limit point of a Γ-orbit. This means that there is a disk around P such that for any

orbit ΓQ, there exist no other points of ΓP in the disk, except maybe for P. We also define

the term fixed-point free group: Γ is fixed point-free if for every point P ∈ R2 if gP = P ,

then g = identity . Then a group Γ is discontinuous and fixed point free if and only if every

P ∈ R2 has a neighborhood D in which every point is in a different orbit of Γ, or equivalently,

every P ∈ R2 has a neighborhood D such that g(D) ∩D = ∅ for all g ̸= 1, g ∈ Γ. Examples

of discrete groups of isometries are all the ones considered above.

3 Hyperbolic Geometry and the D2 Model

As mentioned earlier, when Euclid wrote “The Elements”, he stated 5 postulates, or state-

ments to be taken without proof, that form the basis of his proofs for numerous theorems.

Most of these postulates seem very straightforward and are easy statements to believe with-

out proof. The 5th postulate, however, stood out among the rest for being much more

complex. This postulate is also known as the parallel postulate.

12



Figure 14: Parallel postulate in hyperbolic geometry: Through the point P not on the given
line l, there exists two lines, m and n, going through point P parallel to line l

Figure 15: Parallel lines in Euclidean geometry vs hyperbolic geometry

The parallel postulate states that through a point not on a given line, there exists a

unique line through that point parallel to the given line (Figure 13). This one did not seem

as easy to believe without proof, and for years many mathematicians tried to prove the 5th

postulate using the other four and failed. That is because there exist counter-examples of

the statement, hyperbolic and spherical geometry. This parallel postulate is what separates

Euclidean and hyperbolic geometry.

Euclidean geometry accepts the parallel postulate as written above.

Hyperbolic geometry has the following parallel postulate: through a point not on a given

line, there exist multiple lines through that point that are parallel to the given line (Figure

14).

This single difference changes many of the fundamental aspects between the different

13



Figure 16: Disc Model

types of geometry. For example, distance.

Hyperbolic geometry is represented by several models, including the half-plane model,

disk model, Klein model, etc.

Here, we will be working in the D2 model, also known as the conformal disc model, or

the Poincare disk model (Figure 16). Visually, the D2 model is the unit disc, where the disc

has a unit radius and is centered as (0,0), so it satisfies the equation x2 + y2 < 1.

Distance in the D2 model is defined using lengths of curves. First, for a parametrized

curve γ = (x(t), y(t)), t ∈ [a, b], we define length (γ) =
∫ b

a

2
√

x′(t)2+y′(t)2

1−(x(t)2+y(t)2)
dt. In Euclidean

geometry when we talk about distance, without saying it we normally imply that dis-

tance is the length of the shortest curve between two points. Hyperbolic geometry has

the same property. Between two points a and b, we take distance to be defined as d(a, b) =

inf {length of curves connecting a and b}, where infimum is the greatest real number that is

less than or equal to each element of the set. It can also be thought of as taking the minimum

of the set. This setup implies the triangle inequality, because the union of curves γ1 from P

to Q and γ2 from Q to R is a curve γ from P to R, so d(P,R) ≤ length (γ1) + length (γ2).

Because this holds for any curves γ1 and γ2, it will hold when we take the infimum, hence

14



Figure 17: Examples of lines in D2

d(P,R) ≤ d(P,Q)+d(Q,R). It is possible to write a formula for distance between two points

in D2, but it is much more complicated.

Lines in D2 are also defined as the set of points equidistant from two points.

In D2, hyperbolic lines are either lines through the origin or circles perpendicular to the

boundary circle, where we consider only the part inside D2 (Figure 17).

As mentioned above, parallel lines work differently in the D2 model.

There exist two types of parallel lines. If the lines intersect at the boundary of the disc,

because the boundary of the disc is not a part of D2, we say they are parallel and more

specifically, that they are hyperparallel or asymptotically parallel[4]. For example, line p

is considered hyperparallel to line d in Figure 18, as they only intersect at the boundary.

Other parallel lines do not intersect in D2 nor at the boundary, and these are called disjointly

parallel or ultraparallel. For example, line d is considered disjointly parallel to line n in Figure

18.

Just as in Euclidean geometry, isometries exist in hyperbolic geometry as well, defined

as distance-preserving maps on the hyperbolic plane. An important aspect of the hyperbolic

plane that impacts its isometries is that there exists a natural boundary called the circle

15



Figure 18: Examples of parallel lines in D2

at infinity, denoted as ∂D2, and is the unit circle. In other words, it is the boundary of

D2, where the set of points are Euclidean limits of D2, but themselves are not in D2. For

example, in Figure 18, the points P and Q are on the boundary of the disc and therefore not

actually in D2.

As in Euclidean geometry, hyperbolic geometry isometries include rotations, translations,

reflections, and glide reflections, and adds a new isometry, limit rotations. These isometries

are most simply expressed in complex form, where z = x+ iy.

A rotation about the origin in D2 is given by rθ(w) = eiθw, much like in Euclidean

geometry (Figure 19). It has only one fixed point, the center of rotation. It also leaves

invariant the circles with center at the origin.

A limit rotation is a “rotation” about a point on the boundary. It moves the lines that

go through P, and leaves horocycles invariant. A horocycle is a Euclidean circle in D2 that

touches D2. There are no fixed points in D2, however, there is one at the circle of infinity,

P.

A translation in D2 along a line l moves points along the line l in one direction and moves

other points of D2 in the direction of the line (Figure 20). The endpoints of the line at the

circle at infinity are the only fixed points of a hyperbolic translation and it keeps the line l

16



Figure 19: Example of a hyperbolic rotation

Figure 20: Example of hyperbolic translation

17



Figure 21: Example of a hyperbolic reflection

invariant.

Hyperbolic reflections in a hyperbolic line l are similar to Euclidean geometry ones.

They leave the line of reflection invariant and swap the sides of the hyperbolic line. When

the hyperbolic line is a line through the center, it is a Euclidean reflection. When the

hyperbolic line of reflection is a circle perpendicular to the boundary, it is an inversion in

this circle (Figure 21). If l is a circle in R2 centered at O and with Euclidean radius r,

the inversion I : R2 → R2 is defined as I(P ) = P ′, where P ′ is on Euclidean line OP and

d(O,P ) · d(O,P ′) = r2 [1]. An inversion swaps the inside and outside of the circle l, thereby

acting like a reflection in the circle. Lastly, there exist glide reflections, the composite of a

reflection in a line with a translation in the direction of the same line.

We can prove the following: the set of points D2-equidistant from two points P, P ′ ∈ D2

is a D2-line and a D2-reflection in this line exchanges P and P’. As in Euclidean geometry,

we have the three reflections theorem, stating that each D2 isometry is the product of one,

two, or three reflections in D2. Also as in Euclidean geometry, we can classify isometries as

18



orientation-reversing or orientation-perserving. Glide reflections and reflections are the types

of isometries in D2 that are orientation-reversing and therefore is the product of one or three

reflections[4]. Translations, limit rotations, and rotations are all orientation-preserving, and

therefore the product of two reflections.

As mentioned above, a reflection in a hyperbolic line that is a circle is an inversion

in the circle. Because of the three-reflections theorem, all D2 isometries are products of

inversions in circle Cα,p or reflections in lines through the origindabook. Now, we can use

the complex form of inversions and reflections to express all D2 isometries as a complex

function of the same form. In complex form, inversions can be written as iC(z) =
r2

z−z0
+ z0,

where C represents the circle, z0 the center and r the radius, and reflections in lines take

form r̄(z) = c+ eiθz̄. Using this, we can get all D2 isometries to be of the form f(z) = pz+q
rz+s

if they are orientation-preserving or f̄(z) = pz̄+q
rz̄+s

, if they are orientation-reversing. Taking

into account that inversions are in circles perpendicular to ∂D2 and reflections are in lines

through the origin, we get general forms

f(z) =
az + b

b̄z̄ + ā
and f̄(z) =

az̄ + b

b̄z̄ + ā

where a, b ∈ C and |a|2 + |b|2 = 1. The first equation represents orientation-preserving

isometries in D2, while the second equation represents orientation-reversing isometries. Since

both of those expressions have form f(z) = pz+q
rz+s

or f̄(z) = pz̄+q
rz̄+s

, and the collection of

functions H = {z → pz+q
rz+s

, z → pz̄+q
rz̄+s

} | p, q, r, s ∈ C is a group, we deduce that every

hyperbolic isometry can be written as a complex function from H. Now, there is a map ϕ

from 2× 2 complex matrices to functions f(z) = pz+q
rz+s

given by

ϕ(

 p q

r s

) = f, where f(z) =
pz + q

rz + s
.

The map ϕ satifies ϕ(AB) = ϕ(A) ◦ ϕ(B) (i.e. ϕ is a homomorphism). This allows us to
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compute composites of functions by multiplying their corresponding matrices.

We can also represent lines and circles as matrices as well. In complex form, a circle with

center d and radius r has the equation |z − d|2 = r2. A little algebra shows we can write

this equation in the form a|z|2 + b̄z + bz̄ + c = 0, where a, c ∈ R, b ∈ C, and |b|2 − ac ≥ 0.

Then, d = −b
a

and r =

√
|b|2−ac

|a| . Conversely, if a ̸= 0, every equation a|z|2 + b̄z + bz̄ + c =

0 where |b|2 − ac ≥ 0 can be written as |z − d|2 = r2. If in this equation a = 0, we get the

equation of a line with a normal vector b, so our equation can be used to represent both lines

and circles in C. Now, we can write the equation in matrix form as follows:

 a b

b̄ c


 z

1

 ·

 z̄

1

 = 0

where · is the dot product of vectors, so a matrix with a negative determinant can be

used to represent a line or circle. Note, if A =

 a b

b̄ c

 represents a circle, then its radius

is
√
− detA
|a| . We can also find the image of a line or circle L by the function f(z) = pz+q

rz+s
as

follows: if matrix A corresponds to L and matrix F corresponds to f and matrix F* is the

conjugate transpose of matrix F, then matrix F*AF corresponds to f−1(L)[3].

4 4g-gon and the Genus-g Surface

A polygon in D2 is, just like in R2, a region of D2 bounded by hyperbolic lines. In the D2

model, there exists a symmetric polygon with 4g sides called the 4g-gon.

Just like the side-pairings of a parallelogram in R2 that produce a torus, there is a side-

pairing of the 4g-gon that produces an interesting space. To understand a simpler example,

take g=2. We get an octagon inD2 (figure 22). We can take a line through the center and two
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Figure 22: 4g-gon with g=2 and associated side-pairings

vertices, and divide this octagon into two pieces, each with 4 sides from the original octagon,

and the fifth from dividing it. The 4 sides can be paired by two hyperbolic translations.

Then, much as we did with a torus, we can “glue” the paired sides. Note that each of the

pieces has a side-pairing just like the side pairing of a square that produces a torus, but the

5th side is not identified with anything, so we see the result of side pairing is a torus with a

hole.

Since each of the pieces of the octagon produces a torus with a hole, and their unpaired

fifth sides need to be identified, we glue the holes together and form what is known as a genus-

2 surface (Figure 23). In the name, g represents the number of toruses that compose the

overall surface. If we, for example, consider g=3, then the 4g-gon is a 12-sided symmetric

polygon in D2 with a similar side pairing; 3 blocks of 4 adjacent sides are paired in a

similar way by hyperbolic translations. The result of identification at the sides is a genus-3

surface that has 3 “holes” connected. The isometries that produce these side-pairings form a

discrete group which we denote here as Γ, because the side-pairings satisfy certain technical

conditions.
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Figure 23: Genus-g surface where g=2

The purpose of this research is to take this group and apply the isometries from it to a

chosen hyperbolic line in D2 in order to determine if the images of L form a dense set. If not,

then we may be able to construct a fundamental polygon using images of several hyperbolic

lines, like in section 2 for the group of translations of R2.

5 Computation Setup

To carry out the research, we used the computer application Mathematica, which allows easy

use of matrix computations and graphing. To begin, we first computed our first side pairing

f1 by hand: it is the composite of an inversion in one side and a reflection in a line that

sends a side to the paired side. Because the other side-pairing pattern is simply a rotation

of one-side-pairing, we conjugated f1 by rotations to get all generators f1, f2, . . . , f2g. We

computed with matrices which we stored in a list along with their inverses. We also chose a

line to transform with isometries in Γ and represented it with matrix A. Using the formula

F*AF, we computed the images of the line by each of the generators and their inverses and

stored the results in a list. We then ran the same process for each element of the new list

to obtain a new list of images by composites of the two generators or their inverses. So each
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Figure 24: Transformation where line l is taken to be the y-axis

iteration gave exponentially more images of the line (factor=2g). For g=2, the list grew from

8 to 64 to 512, etc. Because our main goal is to visually see if these transformations produce

dense lines we graphed all of the images formed in one iteration over the unit circle. We then

saved the picture from each iteration and overlayed all the pictures to see the lines produced.

For each starting line we chose, we were only able to run 5 iterations of the transformation

or fewer before Mathematica reached its capacity. It is to be noted that throughout this

process, there are some repetitions of the same line, but it is not a large proportion.

6 Results

The first line we tested was the y-axis. This seemed like it would give a good starting point,

as other theory implies we would get images that are not dense. From the figure, we see the

resulting transformation of the y-axis produces a clean picture. Only two lines go through

the center, and the rest of the lines appear as half-circles along the boundary of the unit

circle. Therefore, we see there are no dense lines from this transformation.
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Figure 25: Another transformation of a different line L represented by

[
0 1− .7i

1 + 7i 0

]

We noticed that every two iterations of our loop produces the original line on the graph.

This is because every two iterations produce f−1
p (fp(L)) = L, where p = 1, 2, . . . , 2g. In other

terms, every two iterations we will have applied a generator fp to L in the first iteration and

then the generator f−1
p to its image in the second iteration, getting f−1

p (fp(L)) = L. This

gave us more confidence in the correctness of our images and is an example of repeated lines

in the list. In general, 1
4g

of the items in the list after two iterations are items from the

original list, but the list grows by factor (4g)2 after two iterations.

Next, we took the lines represented by matrixes:

 0 1− .7i

1 + 7i 0

 and

 0 1− .3i

1 + 3i 0


and obtained the following images of Figures 25 and 26.

We see some larger circles are close to the center but there is still no density at the center.

As stated above, we can take g to be any integer to form the genus-g surface. Because

of this, we also tried transformations where g was 3 and 4.

We took g=3 and line L to be the y-axis. As Figure 27 shows, the lines become very

dense and chaotic towards the boundary of the unit circle, however leaves the center of the

24



Figure 26: Another transformation of a different line L represented by

[
0 1− .3i

1 + 3i 0

]

Figure 27: Tranformation using the y-axis and g=3
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Figure 28: Another tranformation with g=3

disk not dense. This was only using 4 iterations.

Inspired by our first results, we decided to run more transformations where g=3. We

used matrix

 0 1− .5i

1 + 5i 0

 and obtained the image shown in Figure 28.

Again, similar to Figure 27, we notice that after 4 iterations, we see density around the

boundary of our unit circle.

7 Conclusion

From our results, we see that if we start with a line through the origin, we always get a nice

picture that suggests no density. It is to be noted, however, that Mathematica’s capacity

only goes up to 5 iterations before it times out. This means we are only seeing images of

L by isometries of Γ that are products of up to 5 generators. Since a general isometry of Γ

can be a product of any finite number of generators it is possible that images by some of the

unexplored isometries may be dense. A possible solution to the problem could be to take a

random collection of generators and apply them to line L to get the image L′ and the initial
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line in our process, and repeat the above process to line L′ as the starting line. If we take a

random collection of 15 generators and apply them to L to get L′ and run the process up to

5 iterations, we would get images of lines by up to 20 generators.

As stated earlier, hyperbolic lines can also appear as circles in the D2 model. We at-

tempted circles as lines to transform, however, Mathematica had difficulty in graphing the

results. We believe that because a transformation over a circle in the D2 model has a higher

chance of producing more complex matrices, Mathematica struggles to graph these complex

matrices, and its capacity is reached much earlier, as early as the second iteration, perhaps

due to rounding errors.

Overall, this research gives some reason to believe that the transformation of lines in

the D2 model does not produce dense lines, and may be used to construct a fundamental

polygon.
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