Introduction

- In 2019, an estimated 77.9 million pounds of burley tobacco was produced in Kentucky (USDA, 2020)
- The incidence rates of musculoskeletal disorders in support activities for crop production is 30.2 per 10,000 full-time workers (Bureau of Labor Statistics, 2019)
- The purpose of the study was to assess the ergonomic risk factors of cutting and spiking tobacco leaves during harvest

Methods

- Muscle activity and posture was assessed in the field during the cutting and spiking activities of tobacco harvesting

- Research Subjects
 - Nine (9) males
 - Mean Age (years): 30.7 (5.0)
 - Mean Body Mass Index (kg/m²): 26.8 (4.4)

- Data Collection Tools
 - Inertial Measurement Units: thoracic flexion
 - Electromyography: muscle activity of the mid deltoid and trapezius muscles

- Data Collection Tools
 - A maximum voluntary contraction (MVC) was collected for each participant to evaluate muscle activity as a percentage of MVC

Results

- In comparison to MVC’s, muscle activation of the mid deltoid and trapezius muscles do not indicate high force muscle exertions during tobacco cutting and spiking activities
- Awkward postures are the greatest ergonomic risk factor in tobacco harvesting activities

<table>
<thead>
<tr>
<th>Thoracic Flexion During Spiking Activities</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10th percentile</td>
<td>-2.52</td>
<td>5.28</td>
</tr>
<tr>
<td>50th percentile</td>
<td>6.02</td>
<td>5.76</td>
</tr>
<tr>
<td>90th percentile</td>
<td>14.56</td>
<td>10.35</td>
</tr>
<tr>
<td>% Time in neutral posture</td>
<td>39.72</td>
<td>22.74</td>
</tr>
</tbody>
</table>

Discussion

- Results collected indicate that tobacco harvesting activities consist of high repetition, low force tasks that have the potential to result in chronic repetitive motion injuries
- Designing tools to assist in cutting and spiking activities that reduce awkward postures and repetitive movement can significantly reduce the prevalence of musculoskeletal disorders in tobacco harvesters

Acknowledgements

This study was partially supported by the National Institute for Occupational Safety and Health (NIOSH) Grant # 2T42OH008436