Tri-colored Bat Roost Tree Use and Movement Patterns Following White-nose Syndrome in Western Kentucky

Katherine Schaefer
Murray State University

Terry Derting
Murray State University

Jordan Robbins
Murray State University

Follow this and additional works at: https://digitalcommons.murraystate.edu/scholarsweek

Part of the [Ecology and Evolutionary Biology Commons](https://digitalcommons.murraystate.edu/)

Schaefer, Katherine; Derting, Terry; and Robbins, Jordan, "Tri-colored Bat Roost Tree Use and Movement Patterns Following White-nose Syndrome in Western Kentucky" (2016). *Scholars Week*. 19.
https://digitalcommons.murraystate.edu/scholarsweek/2016/SigmaXi/19

This Event is brought to you for free and open access by the The Office of Research and Creative Activity at Murray State's Digital Commons. It has been accepted for inclusion in Scholars Week by an authorized administrator of Murray State's Digital Commons. For more information, please contact msu.digitalcommons@murraystate.edu.
Introduction
The tri-colored bat (Perimyotis subflavus) was once one of the most common bats in North America and a species for which we have limited knowledge of its roosting habitat needs (Veilleux et al. 2004; Lacki et al. 2007). The species is undergoing severe declines due to the fungal disease white nose syndrome (WNS; Coleman 2014). Despite the extinction of local bat populations in many areas, remnant populations of WNS-susceptible bats, including tri-colored bats, are surviving where the main populations were decimated (Frick et al. 2015). We examined roost tree use by tri-colored bats in western Kentucky (Figure 1) five years after WNS was confirmed in the state.

Objective
Determine distinguishing characteristics of roost trees and roosting areas used by tri-colored bats so that their roost needs can be considered in management plans.

Methods
- Mist-netted bats at LBL and Clarks River National Wildlife Refuge during May through August 2015.
- Attached a radio transmitter to adult tri-colored bats (Figure 2).
- Tracked six bats to their day roosts for one to 12 days as signal allowed (Figure 3; Perry and Thill 2007).
- Collected habitat data at 20 roost tree and 40 randomly selected trees within the distance traveled by a bat to its roosts O’Keefe et al. (2009).
- Used habitat data to create a generalized linear model and compared variables measured between roost tree and random tree sample groups (Veilleux et al. 2003).

Roost Use Results (cont.)
All roosting bats were located within the foliage of live trees.

Bat Movement Results
Greatest distance moved to successive roosts was 207.8 m; average movement 68.9 m.

Roost and Available Tree Species
19 roosts located in 10 different species of tree. Mockernut hickory (Carya tomentosa) and black oak (Quercus velutina) was used as roosts more, and white oak (Q. alba) were used less, than available.

Roost Use Results
Canopy depth is a significant predictor of bat tree use. The best linear model ($p < 0.007$) comparing known roost trees to our random tree survey is:

Bat Occurrence = 0.12 * Canopy Depth (m) – 2.07

Conclusions
- Tri-colored bats appeared to select for and against specific tree species and for higher canopy depth than occurred at random.
- Mean movement to next roost (69 m) was much less than typically reported for coinciding protected Myotis spp. (Lacki et al. 2007)
- Management needs of the tri-colored bat likely differ from those of other declining bat species (e.g., Myotis spp.) which prefer trees in mid-decay stages.

Literature Cited

Acknowledgements
We thank the US Forest Service for providing data, the US Fish and Wildlife Service, Hancock Biological Station, Kentucky Society of Natural History, Larry D. Pharris Memorial Fund, Sigma Xi, Watershed Studies Institute, Murray State University for funding, and the volunteers from Land Between the Lakes and Murray State University for helping in the field.