Document Type

Journal Article

Publication Date

Winter 1-31-2020

Publication Title

Visa trial of international trade: evidence from support vector machines and neural networks


Computer Science and Information Systems


Arthur J. Bauernfeind College of Business


International trade depends on networking, interaction and in-person meetings which stimulate cross-border travels. The countries are seeking policies to encourage inbound mobility to support bilateral trade, tourism, and foreign direct investments. Some nations have been implementing liberal visa regimes as an important part of facilitating policies in view of security concerns. Turkey has been among the nations introducing liberal visa policies to support trade in the last decade and recorded significant increases in the volumes of exports. In this paper, we employed machine learning methodologies, Support vector machines (SVM) and Neural networks (NN), to investigate the facilitating impact of liberal visa policies on bilateral trade, using the export data from Turkey for the period of 2000–2014. The research disentangled the variables that have the strongest impact on trade utilizing SVM and NN models and exhibited that visa policies have significant impacts on the bilateral trade. More relaxed visa policies are recommended for the countries in the pursuit of increasing exports.

Included in

Business Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.