Poster Title

Developing Web-based Predictive Application for Crowdfunding Campaigns

Grade Level at Time of Presentation

Senior

Major

Computer Science

Minor

Mathematics

Institution

Eastern Kentucky University

KY House District #

93

KY Senate District #

31

Department

Dept. of Computer Science

Abstract

The popularity of crowdfunding campaigns like Kickstarter, GoFundMe, and Indiegogo has led to the rise of the campaign creators and backers to predict if the campaigns are likely to succeed prior to launching them via the Internet. Predicting a successful campaign which implies the funding goal is reached can have an important influence on the campaign project description including USD pledged, number of backers, goal amount, amount of days, and campaign category, etc. in the crowdfunding platform. Therefore, we studied 300,000 real campaigns of 2009-2016 Kickstarter in Kaggle competition to find the determinant features for the campaign’s success and applied a machine learning algorithm to develop a web-based application that enables a user to predict if a campaign is a successful or failed project. Our application can provide insights to creators and backers to better understand practical impact of a crowdfunding campaign.

This document is currently not available here.

Share

COinS
 

Developing Web-based Predictive Application for Crowdfunding Campaigns

The popularity of crowdfunding campaigns like Kickstarter, GoFundMe, and Indiegogo has led to the rise of the campaign creators and backers to predict if the campaigns are likely to succeed prior to launching them via the Internet. Predicting a successful campaign which implies the funding goal is reached can have an important influence on the campaign project description including USD pledged, number of backers, goal amount, amount of days, and campaign category, etc. in the crowdfunding platform. Therefore, we studied 300,000 real campaigns of 2009-2016 Kickstarter in Kaggle competition to find the determinant features for the campaign’s success and applied a machine learning algorithm to develop a web-based application that enables a user to predict if a campaign is a successful or failed project. Our application can provide insights to creators and backers to better understand practical impact of a crowdfunding campaign.