Editor's Notes

Within Using paleosols to reconstruct past environments before, during and after periods of Anatomically Human Migration at Gona, Ethiopia, Kevin Bynum looks into the correlation between migration and landscape composition through studying physical and chemical changes of fossilized soils from Gona, Ethiopia. With a focus on paleo-Vertisols, the student analyzed the features that formed in distal floodplain settings during migration.


Environmental change is thought to have driven dispersals of Anatomically Modern Humans (AMH) out of Africa, yet the precise landscape context of these migrations remains unclear. Furthermore, river-based archives of paleoenvironment during periods of dispersal are scarce. Gona, an area in northeastern Ethiopia with one of the most continuous records of East African Paleolithic and Neolithic archaeology, contains abundant Middle to Late Pleistocene river deposits interbedded with volcanic ash. This study examines the physical and chemical changes of 11 fossilized soils (paleosols) extracted from Gona’s paleoanthropological sites that range in age from the Middle to the Late Pleistocene (~380-11 ka). The paleosols from Gona yield insight into the landscapes with which our earliest direct ancestors interacted, as they are a dynamic biogeochemical archive of weathering, related to the surrounding environment at the time of formation. We focus on paleo-Vertisols or paleosols with vertic features that formed in distal floodplain settings to provide a control on landscape position. The paleosols at Gona record evidence of wetter paleoclimates during periods of AMH migration and suggest that this terrestrial record is a unique source for paleoenvironmental data. This localized dataset complements additional regional-scale paleoenvironmental records when interpreting the forcing and responses of Out-of-Africa migrations.


Arriaga, F.J., Lowery, B., and Mays, M.D., 2006, A fast method for determining soil particle size distribution using a laser instrument: Soil Science, v. 171, p. 663–674, doi:10.1097/01.ss.0000228056.92839.88.

Ashley, G.M., Beverly, E.J., Sikes, N.E., and Driese, S.G., 2014, Paleosol diversity in the Olduvai Basin, Tanzania: Effects of geomorphology, parent material, depositional environment, and groundwater on soil development: Quaternary International, v. 322–323, p. 66–77, doi:10.1016/j.quaint.2013.12.047.

Asrat, A., Baker, A., Leng, M.J., Hellstrom, J., Mariethoz, G., Boomer, I., Yu, D., Jex, C.N., and Gunn, J., 2018, Paleoclimate change in Ethiopia around the last interglacial derived from annually-resolved stalagmite evidence: Quaternary Science Reviews, v. 202, p. 197–210, doi:10.1016/j.quascirev.2018.06.016.

Aubert, M., Pike, A.W.G., Stringer, C., Bartsiokas, A., Kinsley, L., Eggins, S., Day, M., and Grün, R., 2012, Confirmation of a late middle Pleistocene age for the Omo Kibish 1 cranium by direct uranium-series dating: Journal of Human Evolution, v. 63, p. 704–710, doi:10.1016/j.jhevol.2012.07.006.

Beverly, E.J., Lukens, W.E., and Stinchcomb, G.E., 2018, Paleopedology as a Tool for Reconstructing Paleoenvironments and Paleoecology, in Croft, D.A., Su, D.F., and Simpson, S.W. eds., Methods in Paleoecology, Cham, Springer International Publishing, p. 151–183, doi:10.1007/978-3-319-94265-0_9.

Blazejewski, G.A., Stolt, M.H., Gold, A.J., and Groffman, P.M., 2005, Macro- and Micromorphology of Subsurface Carbon in Riparian Zone Soils: Soil Science Society of America Journal, v. 69, p. 1320, doi:10.2136/sssaj2004.0145.

Blome, M.W., Cohen, A.S., Tryon, C.A., Brooks, A.S., and Russell, J., 2012, The environmental context for the origins of modern human diversity: A synthesis of regional variability in African climate 150,000–30,000 years ago: Journal of Human Evolution, v. 62, p. 563–592, doi:10.1016/j.jhevol.2012.01.011.

Brown, F.H., McDougall, I., and Fleagle, J.G., 2012, Correlation of the KHS Tuff of the Kibish Formation to volcanic ash layers at other sites, and the age of early Homo sapiens (Omo I and Omo II): Journal of Human Evolution, v. 63, p. 577–585, doi:10.1016/j.jhevol.2012.05.014.

Buol, S.W., 1989, Soil Genesis and Classification: Ames: Iowa State University Press, https://onlinelibrary.wiley.com/doi/book/10.1002/9780470960622 (accessed September 2019).

Dexter, A.R., 2004, Soil physical quality Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth: , p. 15.

Driese, S.G., Peppe, D.J., Beverly, E.J., DiPietro, L.M., Arellano, L.N., and Lehmann, T., 2016, Paleosols and paleoenvironments of the early Miocene deposits near Karungu, Lake Victoria, Kenya: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 443, p. 167–182, doi:10.1016/j.palaeo.2015.11.030.

Groucutt, H.S. et al., 2015, Rethinking the dispersal of Homo sapiens out of Africa: Rethinking the Dispersal of Homo sapiens out of Africa: Evolutionary Anthropology: Issues, News, and Reviews, v. 24, p. 149–164, doi:10.1002/evan.21455.

Grün, R., Stringer, C., McDermott, F., Nathan, R., Porat, N., Robertson, S., Taylor, L., Mortimer, G., Eggins, S., and McCulloch, M., 2005a, U-series and ESR analyses of bones and teeth relating to the human burials from Skhul: Journal of Human Evolution, v. 49, p. 316–334, doi:10.1016/j.jhevol.2005.04.006.

Grün, R., Stringer, C., mcdermott, frank, Nathan, R.H., Porat, N., Robertson, S.K., Taylor, L., Mortimer, G.E., Eggins, S., and McCulloch, M., 2005b, U-series and ESR analyses of bones and teeth relating to the human burials from Skhul.: Journal of human evolution, v. 49, p. 316–334, doi:10.1016/j.jhevol.2005.04.006.

Harvati, K. et al., 2019, Apidima Cave fossils provide earliest evidence of Homo sapiens in Eurasia: Nature, v. 571, p. 500–504, doi:10.1038/s41586-019-1376-z.

Hershkovitz, I. et al., 2018, The earliest modern humans outside Africa: Science, v. 359, p. 456–459, doi:10.1126/science.aap8369.

Hublin, J.-J. et al., 2017, New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens: Nature, v. 546, p. 289–292, doi:10.1038/nature22336.

Jenny, H., 1941, Factors of soil formation: a system of quantitative pedology: New York, Dover, 281 p.

Lamb, H.F., Bates, C.R., Bryant, C.L., Davies, S.J., Huws, D.G., Marshall, M.H., Roberts, H.M., and Toland, H., 2018, 150,000-year palaeoclimate record from northern Ethiopia supports early, multiple dispersals of modern humans from Africa: Scientific Reports, v. 8, p. 1077, doi:10.1038/s41598-018-19601-w.

Liutkus-Pierce, C.M., Takashita-Bynum, K.K., Beane, L.A., Edwards, C.T., Burns, O.E., Mana, S., Hemming, S., Grossman, A., Wright, J.D., and Kirera, F.M., 2019, Reconstruction of the Early Miocene Critical Zone at Loperot, Southwestern Turkana, Kenya: Frontiers in Ecology and Evolution, v. 7, doi:10.3389/fevo.2019.00044.

Lukens, W.E., Lehmann, T., Peppe, D.J., Fox, D.L., Driese, S.G., and McNulty, K.P., 2017, The Early Miocene Critical Zone at Karungu, Western Kenya: An Equatorial, Open Habitat with Few Primate Remains: Frontiers in Earth Science, v. 5, doi:10.3389/feart.2017.00087.

McDougall, I., Brown, F.H., and Fleagle, J.G., 2005, Stratigraphic placement and age of modern humans from Kibish, Ethiopia: Nature, v. 433, p. 733–736, doi:10.1038/nature03258.

Nordt, L.C., and Driese, S.G., 2013, Application of the Critical Zone Concept to the Deep-Time Sedimentary Record: The Sedimentary Record, v. 11, p. 4–9, doi:10.2110/sedred.2013.3.4.

Nordt, L.C., and Driese, S.D., 2010, New weathering index improves paleorainfall estimates from Vertisols: Geology, v. 38, p. 407–410, doi:10.1130/G30689.1.

Posth, C. et al., 2017, Deeply divergent archaic mitochondrial genome provides lower time boundary for African gene flow into Neanderthals: Nature Communications, v. 8, p. 16046, doi:10.1038/ncomms16046.

Quade, J., Levin, N., Semaw, S., Stout, D., Renne, P., Rogers, M., and Simpson, S., 2004, Paleoenvironments of the earliest stone toolmakers, Gona, Ethiopia: Geological Society of America Bulletin, v. 116, p. 1529–1544, doi:10.1130/B25358.1.

Quade, J., Levin, N.E., Simpson, S.W., Butler, R., McIntosh, W.C., Semaw, S., Kleinsasser, L., Dupont-Nivet, G., Renne, P., and Dunbar, N., 2008, The geology of Gona, Afar, Ethiopia: , p. 32.

Quintana-Murci, L., Semino, O., Bandelt, H.-J., Passarino, G., McElreavey, K., and Santachiara-Benerecetti, A.S., 1999, Genetic evidence of an early exit of Homo sapiens sapiens from Africa through eastern Africa: Nature Genetics, v. 23, p. 437–441, doi:10.1038/70550.

Railsback, L.B., Gibbard, P.L., Head, M.J., Voarintsoa, N.R.G., and Toucanne, S., 2015, An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages: Quaternary Science Reviews, v. 111, p. 94–106, doi:10.1016/j.quascirev.2015.01.012.

Roman, D.C., Campisano, C., Quade, J., DiMaggio, E., Arrowsmith, J.R., and Feibel, C. Composite tephrostratigraphy of the Dikika, Gona, Hadar, and Ledi-Geraru project areas, northern Awash, Ethiopia: , p. 17.

Schoeneberger, P.J., Wysocki, D.A., and Benham, E.C., 2012, Field book for describing and sampling soils: Government Printing Office, 286 p.

Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. https://websoilsurvey.sc.egov.usda.gov/. Accessed [05/03/2019].

Stinchcomb, G.E., and Beverly, E.J., 2019, Editorial: The Role of the Paleo-Critical Zone in Shaping Quaternary Hominin Evolution: Frontiers in Earth Science, v. 7, doi:10.3389/feart.2019.00095.

Stoops, G., 2003, Guidelines for analysis and description of soil and regolith thin sections.:, https://www.cabdirect.org/cabdirect/abstract/20033054441 (accessed August 2019).

Tierney, J.E., deMenocal, P.B., and Zander, P.D., 2017, A climatic context for the out-of-Africa migration: Geology, v. 45, p. 1023–1026, doi:10.1130/G39457.1.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.